Lecture 9

2020/2021
Microwave Devices and Circuits
for Radiocommunications

2020/2021

- 2C/1L, MDCR
- Attendance at minimum 7 sessions (course + laboratory)
- Lectures- associate professor Radu Damian
- Wednesday 15-17, Online, Microsoft Teams
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- $3 p=+0.5 p$
- all materials/equipments authorized

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam
- used at lectures/laboratory

Profile photo

- Profile photo - online "exam"

Examene online: 2020/2021
Disciplina: MDC (Microwave Devices and Circuits (Engleza))
Pas 3

Nr.	Titlu	Start	Stop	Text
1	Profile photos	$03 / 03 / 2021 ; 10: 00$	$08 / 04 / 2021 ; 08: 00$	Online "exam" created f .
2	Mini Test 1 (lecture 2)	$03 / 03 / 2021 ; 15: 35$	$03 / 03 / 2021 ; 15: 50$	The current test consis ..

Online

- access to online exams requires the password received by email

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submission
Important

The lossless line

- input impedance of a length \boldsymbol{l} of transmission line with characteristic impedance \boldsymbol{Z}_{0}, loaded with an arbitrary impedance \boldsymbol{Z}_{L}

The lossless line

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \cdot \beta \cdot z}+V_{0}^{-} e^{j \cdot \beta \cdot z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \cdot \beta \cdot z}-\frac{V_{0}^{-}}{Z_{0}} e^{j \cdot \beta \cdot z} \\
& Z_{L}=\frac{V(0)}{I(0)} \quad Z_{L}=\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}} \cdot Z_{0}
\end{aligned}
$$

- voltage reflection coefficient
$\Gamma=\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}$
- Z_{o} real

The lossless line

$$
V(z)=V_{0}^{+} \cdot\left(e^{-j ; \beta z}+\Gamma \cdot e^{j \cdot \beta \cdot z}\right) \quad I(z)=\frac{V_{0}^{+}}{Z_{0}} \cdot\left(e^{-j ; \beta z}-\Gamma \cdot e^{j ; \beta z}\right)
$$

- time-average Power flow along the line

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \operatorname{Re}\{1-\Gamma^{*} \cdot \underbrace{e^{-2 j \cdot \beta \cdot z}+\Gamma \cdot e^{2 j \cdot \beta \cdot z}}_{\left(z-z^{*}\right)=\operatorname{Im}}-|\Gamma|^{2}\} \\
& P_{\text {avg }}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot\left(1-|\Gamma|^{2}\right)
\end{aligned}
$$

- Total power delivered to the load = Incident power - "Reflected" power
- Return "Loss" [dB] \quad RL $=-20 \cdot \log |\Gamma| \quad[\mathrm{dB}]$

Reflection and power / Model

- The source has the ability to sent to the load a certain maximum power (available power) P_{a}
- For a particular load the power sent to the load is less than the maximum (mismatch) $P_{L}<P_{a}$
- The phenomenon is "as if" (model) some of the power is reflected $P_{r}=P_{a}-P_{L}$
- The power is a scalar!

Matching, from the point of view of power transmission

$Z_{L}=Z_{i}^{*}$

If we choose a real Zo

- complex numbers
- in the complex plane

$$
\Gamma=\frac{Z-Z_{0}}{Z+Z_{0}}
$$

$$
\Gamma_{L}=\Gamma_{i}^{*}
$$

Scattering matrix - S

- a,b
" information about signal power AND signal phase
- $S_{i j}$
- network effect (gain) over signal power including phase information

Impedance matching

The Smith Chart

The Smith Chart

Impedance Matching
Impedance Matching with Stubs

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

Impedance Matching with Stubs

Analytical solutions

Exam / Project

Case 1, Shunt Stub

- Shunt Stub

Analytical solution, usage

$$
\cos (\varphi+2 \theta)=-\left|\Gamma_{S}\right|
$$

$$
\Gamma_{S}=0.593 \angle 46.85^{\circ}
$$

$$
\theta_{s p}=\beta \cdot l=\tan ^{-1} \frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$$
\left|\Gamma_{S}\right|=0.593 ; \quad \varphi=46.85^{\circ} \quad \cos (\varphi+2 \theta)=-0.593 \Rightarrow(\varphi+2 \theta)= \pm 126.35^{\circ}
$$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
- "+" solution \downarrow

$$
\begin{aligned}
& \left(46.85^{\circ}+2 \theta\right)=+126.35^{\circ} \quad \theta=+39.7^{\circ} \quad \operatorname{Im} y_{S}=\frac{-2 \cdot\left|1_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=-1.472 \\
& \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=-55.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s p}=124.2^{\circ}
\end{aligned}
$$

- "_" solution \downarrow

$$
\begin{aligned}
& \left(46.85^{\circ}+2 \theta\right)=-126.35^{\circ} \quad \theta=-86.6^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=93.4^{\circ} \\
& \operatorname{Im} y_{S} \xrightarrow{\frac{Z}{=}+2 \cdot\left|\Gamma_{S}\right|} \\
& \sqrt{1-\left|\Gamma_{S}\right|^{2}}
\end{aligned}=+1.472 \quad \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=55.8^{\circ} .
$$

Case 2, Series Stub

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Analytical solution, usage

$\cos (\varphi+2 \theta)=\left|\Gamma_{S}\right|$

$$
\theta_{s s}=\beta \cdot l=\cot ^{-1} \frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$\Gamma_{S}=0.555 \angle-29.92^{\circ}$

$$
\cos (\varphi+2 \theta)=0.555 \Rightarrow(\varphi+2 \theta)= \pm 56.28^{\circ}
$$

$\left|\Gamma_{S}\right|=0.555 ; \quad \varphi=-29.92^{\circ} \quad \cos (\varphi+2 \theta)=0.555 \Rightarrow(\varphi+2 \theta)= \pm 56.28^{\circ}$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
- "+" solution \downarrow

$$
\begin{aligned}
& \text { " }+ \text { " solution } \downarrow \\
& \left(-29.92^{\circ}+2 \theta\right)=+56.28^{\circ} \quad \theta=43.1^{\circ} \quad \operatorname{Im} z_{S}=\frac{\Delta+2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=+1.335 \\
& \theta_{s s}=-\cot ^{-1}\left(\operatorname{Im} z_{S}\right)=-36.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s s}=143.2^{\circ} \quad
\end{aligned}
$$

- "_" solution

$$
\left(-29.92^{\circ}+2 \theta\right)=-56.28^{\circ} \quad \theta=-13.2^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=166.8^{\circ}
$$

$$
\operatorname{Im} z_{S}=\frac{-2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=-1.335 \quad \theta_{s s}=-\cot ^{-1}\left(\operatorname{Im} z_{S}\right)=36.8^{\circ}
$$

Amplifier Power / Matching

- Two ports in which matching influences the power transfer

Amplifier as two-port

Input matching circuit

- If we can afford a 1.2dB decrease of the input gain for better NF, Q ($\mathrm{Gs}=1 \mathrm{~dB}$), position m 1 above is better
- We obtain better (smaller) NF

Output matching circuit

- output constant gain circles CCCOUT: -0.4dB, -0.2 dB, odB,+0.2 dB
- the lack of noise restrictions allows optimization for better gain (close to maximum - position m4)

The Smith Chart

The Smith Chart

Microwave Filters

Microwave Filters

- Two ways of implementing filters in microwave frequency range
- microwave specific structures (coupled lines, dielectric resonators, periodic structures)
- filter synthesis with lumped elements followed by implementation with transmission lines
- the first strategy leads to more efficient filters but:
- has lower generality
- design is often difficult (lack of analytical relationships)

Filter synthesis

- Filter is designed with lumped elements (L/C) followed by implementation with distributed elements (transmission lines)
- general
- analytical relationships easy to implement on the computer
- efficient
- The preferred procedure is insertion loss method

Insertion loss method

$$
P_{L R}=\frac{P_{S}}{P_{L}}=\frac{1}{1-|\Gamma(\omega)|^{2}}
$$

- $|\Gamma(\omega)|^{2}$ is an even function of ω

$$
\begin{aligned}
& |\Gamma(\omega)|^{2}=\frac{M\left(\omega^{2}\right)}{M\left(\omega^{2}\right)+N\left(\omega^{2}\right)} \\
& P_{L R}=1+\frac{M\left(\omega^{2}\right)}{N\left(\omega^{2}\right)}
\end{aligned}
$$

- Choosing M and N polynomials appropriately leads to a filter with a completely specified frequency response

Insertion loss method

- We control the power loss ratio/attenuation introduced by the filter:
- in the passband (pass all frequencies)
- in the stopband (reject all frequencies)

© John Wiley \& Sons, Inc. All rights reserved.

Filter specifications

- Attenuation
- in passband
- in stopband
- most often in dB
- Frequency range
- passband
- stopband
- cutoff frequency $\omega_{1}{ }^{\prime}$ usually normalized
 (= 1)

Insertion loss method

- We choose the right polynomials to design an low-pass filter (prototype)
- The low-pass prototype are then converted to the desired other types of filters
- low-pass, high-pass, bandpass, or bandstop

Practical low-pass prototypes responses

- Maximally flat filters (Butterworth, binomial): provide the flattest possible passband response
- Equal ripple filters (Chebyshev): provide a sharper cutoff but the passband response will have ripples
- Elliptic function filters, they have equal-ripple responses in the passband as well as in the stopband,
- Linear phase filters, offer linear phase response in the passband to avoid signal distortion (important in some applications)

Maximally Flat/Equal ripple LPF Prototype

Elliptic function LPF Prototype

Figure 8.22
© John Wiley \& Sons, Inc. All rights reserved.

Maximally Flat LPF Prototype

- Polynomial

$$
P_{L R}=1+k^{2} \cdot\left(\frac{\omega}{\omega_{c}}\right)^{2 N}
$$

- For $\omega \gg \omega_{c}$

$$
P_{L R} \approx k^{2} \cdot\left(\omega / \omega_{c}\right)^{2 N}
$$

- attenuation increases $=$
- attenuation increases $=$ at a rate of $20 \cdot \mathrm{NdB} /$ decade
- k gives the attenuation at cutoff frequency (3dB cutoff imposes $\mathrm{k}=1$)

Equal Ripple LPF Prototype

- Polynomial

$$
P_{L R}=1+k^{2} \cdot T_{N}^{2}\left(\frac{\omega}{\omega_{c}}\right)
$$

- For $\omega \gg \omega_{c}$

$$
P_{L R} \approx \frac{k^{2}}{4} \cdot\left(\frac{2 \cdot \omega}{\omega_{c}}\right)^{2 N}
$$

- attenuation increases

at a rate of $20 \cdot \mathrm{~N} \mathrm{~dB} /$ decade (also)
- attenuation is $\left(2^{2 N}\right) / 4$ greater than the binomial response at any given frequency where $\omega \gg \omega_{c}$
- the passband ripples: $1+k^{2}, k$ gives the ripple

Order (N) of the Maximally Flat filter

$$
n \geq \frac{\log \left(\frac{10^{\frac{L_{A s}}{10}}-1}{10^{\frac{L_{A r}}{10}}-1}\right)}{2 \cdot \log \frac{\omega_{s}^{\prime}}{\omega_{1}^{\prime}}}
$$

- !attenuations in dB

Order (N) of the Equal Ripple filter

- !attenuations in dB

Maximally flat filter prototypes

3 dB Equal-ripple filter prototypes

0.5 dB Equal-ripple filter prototypes

Prototype Filters

(b)

Prototype Filters

- Prototype filters are:
- Low-Pass Filters (LPF)
- cutoff frequency $\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=0.159 \mathrm{~Hz}\right)$
- connected to a source with $\mathrm{R}=1 \Omega$
- The number of reactive elements (L/C) is the order of the filter (N)
- Reactive elements are alternated: series L / shunt C
- There two prototypes with the same response, a prototype beginning with a shunt C element, and a prototype beginning with a series L element

Prototype Filters

- We define filter parameters $\mathrm{g}_{\mathrm{i}} \mathrm{i}=0, \mathrm{~N}+1$
- g_{i} are the element values in the prototype filter

$$
\begin{aligned}
g_{0} & =\left\{\begin{array}{l}
\text { generatorresistance } R_{0}^{\prime} \text { if } g_{1}=C_{1}^{\prime} \\
\text { generatorconductance } G_{0}^{\prime} \text { if } g_{1}=L_{1}^{\prime}
\end{array}\right. \\
\left.g_{k}\right|_{k=\overline{1, N}} & =\left\{\begin{array}{l}
\text { inductancefor series inductors } \\
\text { capacitance for shuntcapacitors }
\end{array}\right. \\
g_{N+1} & =\left\{\begin{array}{l}
\text { load resistance } R_{N+1}^{\prime} \text { if } g_{N}=C_{N}^{\prime} \\
\text { load conductanc } G_{N+1}^{\prime} \text { if } g_{N}=L_{N}^{\prime}
\end{array}\right.
\end{aligned}
$$

Maximally Flat LPF Prototype

- Formulas for filter parameters

$$
\begin{aligned}
& g_{0}=1 \\
& g_{k}=2 \cdot \sin \left[\frac{(2 \cdot k-1) \cdot \pi}{2 \cdot N}\right] \quad, \quad k=1, N \\
& g_{N+1}=1
\end{aligned}
$$

Maximally Flat LPF Prototype

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes $\left(g_{0}=1\right.$, $\omega_{c}=1, N=1$ to 10)

\boldsymbol{N}	$\boldsymbol{g}_{\mathbf{1}}$	$\boldsymbol{g}_{\mathbf{2}}$	$\boldsymbol{g}_{\mathbf{3}}$	$\boldsymbol{g}_{\mathbf{4}}$	$\boldsymbol{g}_{\mathbf{5}}$	$\boldsymbol{g}_{\mathbf{6}}$	$\boldsymbol{g}_{\mathbf{7}}$	$\boldsymbol{g}_{\mathbf{8}}$	$\boldsymbol{g}_{\mathbf{9}}$	$\boldsymbol{g}_{\mathbf{1 0}}$	$\boldsymbol{g}_{\mathbf{1 1}}$
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

[^0]
Equal-ripple LPF Prototype

- Formulas for filter parameters (iterative)

$$
\begin{gathered}
a_{k}=\sin \left[\frac{(2 \cdot k-1) \cdot \pi}{2 \cdot N}\right], k=1, N \quad \beta=\ln \left(\operatorname{coth} \frac{L_{A r}}{17.37}\right) \\
\gamma=\sinh \left(\frac{\beta}{2 \cdot N}\right) \quad b_{k}=\gamma^{2}+\sin ^{2}\left(\frac{k \cdot \pi}{N}\right), \quad k=1, N \\
g_{1}=\frac{2 \cdot a_{1}}{\gamma} \\
g_{k}=\frac{4 \cdot a_{k-1} \cdot a_{k}}{b_{k-1} \cdot g_{k-1}}, \quad k=2, N \\
g_{N+1}= \begin{cases}1 & \text { for odd } N \\
\operatorname{coth}^{2}\left(\frac{\beta}{4}\right) & \text { foreven } N\end{cases}
\end{gathered}
$$

TABLE 8.4 Element Values for Equal-Ripple Low-Pass Filter Prototypes $\left(g_{0}=1, \omega_{c}=\right.$ $1, N=1$ to $10,0.5 \mathrm{~dB}$ and 3.0 dB ripple)

0.5 dB Ripple											
N	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{11}

| 1 | 0.6986 | 1.0000 | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1.4029 | 0.7071 | 1.9841 | | | | | | | | | | |
| 3 | 1.5963 | 1.0967 | 1.5963 | 1.0000 | | | | | | | | | |
| 4 | 1.6703 | 1.1926 | 2.3661 | 0.8419 | 1.9841 | | | | | | | | |
| 5 | 1.7058 | 1.2296 | 2.5408 | 1.2296 | 1.7058 | 1.0000 | | | | | | | |
| 6 | 1.7254 | 1.2479 | 2.6064 | 1.3137 | 2.4758 | 0.8696 | 1.9841 | | | | | | |
| 7 | 1.7372 | 1.2583 | 2.6381 | 1.3444 | 2.6381 | 1.2583 | 1.7372 | 1.0000 | | | | | |
| 8 | 1.7451 | 1.2647 | 2.6564 | 1.3590 | 2.6964 | 1.3389 | 2.5093 | 0.8796 | 1.9841 | | | | |
| 9 | 1.7504 | 1.2690 | 2.6678 | 1.3673 | 2.7239 | 1.3673 | 2.6678 | 1.2690 | 1.7504 | 1.0000 | | | |
| 10 | 1.7543 | 1.2721 | 2.6754 | 1.3725 | 2.7392 | 1.3806 | 2.7231 | 1.3485 | 2.5239 | 0.8842 | 1.9841 | | |

3.0 dB Ripple											
N	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g8	g_{9}	g_{10}	g_{11}
1	1.9953	1.0000									
2	3.1013	0.5339	5.8095								
3	3.3487	0.7117	3.3487	1.0000							
4	3.4389	0.7483	4.3471	0.5920	5.8095						
5	3.4817	0.7618	4.5381	0.7618	3.4817	1.0000					
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095				
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000			
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4.4990	0.6073	5.8095		
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118	4.6692	0.7760	3.5340	1.0000	
10	3.5384	0.7771	4.6768	0.8136	4.7425	0.8164	4.7260	0.8051	4.5142	0.6091	5.8095

[^1]For even N order of the filter ($\mathrm{N}=2,4,6$, 8 ...) equal-ripple filters must closed by a load impedance $\mathrm{g}_{\mathrm{N+1}} \neq 1$ If the application doesn't allow this, supplemental impedance matching is required (quarterwave transformer, binomial ...) to $\mathrm{g}_{\mathrm{L}}=1$

Table 8.4

Example

- Design a 3rd order bandpass filter with 0.5 dB ripples in passband. The center frequency of the filter should be 1 GHz . The fractional bandwidth of the passband should be 10\%, and the impedance 50Ω.

LPF Prototype

- 0.5 dB equal-ripple table or design formulas:
- $\mathrm{g} 1=1.5963=\mathrm{L}_{1} / \mathrm{C}_{3}$,
- $\mathrm{g} 2=1.0967=\mathrm{C} 2 / \mathrm{L} 4$,
- $93=1.5963=L_{3} / C_{5}$,
- $94=1.000=R_{L}$

LPF Prototype

$-\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=\omega_{0} / 2 \pi=0.159 \mathrm{~Hz}\right)$

Impedance and Frequency Scaling

- After computing prototype filter's elements:
- Low-Pass Filters (LPF)
- cutoff frequency $\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=0.159 \mathrm{~Hz}\right)$
- connected to a source with $\mathrm{R}=1 \Omega$
- component values can be scaled in terms of impedance and frequency

Impedance and Frequency Scaling

- LPF Prototype is only used as an intermediate step
- Low-Pass Filter (LPF)
" cutoff frequency $\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=0.159 \mathrm{~Hz}\right.$)
- connected to a source with $R=1 \Omega$

Figure 8.23
© John Wiley \& Sons, Inc. All rights reserved.

Impedance Scaling

To design a filter which will work with a source resistance of R_{0} we multiplying all the impedances of the prototype design by R_{o} (" ' " denotes scaled values)

$$
\begin{array}{ll}
R_{s}^{\prime}=R_{0} \cdot\left(R_{s}=1\right) & R_{L}^{\prime}=R_{0} \cdot R_{L} \\
L^{\prime}=R_{0} \cdot L & C^{\prime}=\frac{C}{R_{0}}
\end{array}
$$

Frequency Scaling

- changing the cutoff frequency - (fig. b)
- changing the type (for example LPF \rightarrow HPF fig. c) requires also conversion

Frequency Scaling

To change the cutoff frequency of a low-pass prototype from unity to ω_{c} we insert a variable change

$$
\omega \leftarrow \frac{\omega}{\omega_{c}}
$$

Frequency Scaling

- To change the cutoff frequency of a low-pass prototype we insert a variable substitution:

$$
\omega \leftarrow \frac{\omega}{\omega_{c}}
$$

- Equivalent to the widening of the power loss filter response

$$
P_{L R}^{\prime}(\omega)=P_{L R}\left(\frac{\omega}{\omega_{c}}\right)
$$

$j \cdot X_{k}=j \cdot \frac{\omega}{\omega_{c}} \cdot L_{k}=j \cdot \omega \cdot L_{k}^{\prime} \quad j \cdot B_{k}=j \cdot \frac{\omega}{\omega_{c}} \cdot C_{k}=j \cdot \omega \cdot C_{k}^{\prime}$

Frequency Scaling LPF \rightarrow LPF

- New element values for frequency scaling:

$$
L_{k}^{\prime}=\frac{L_{k}}{\omega_{c}} \quad C_{k}^{\prime}=\frac{C_{k}}{\omega_{c}}
$$

- When both impedance and frequency scaling are required:

$$
L_{k}^{\prime}=\frac{R_{0} \cdot L_{k}}{\omega_{c}} \quad C_{k}^{\prime}=\frac{C_{k}}{R_{0} \cdot \omega_{c}}
$$

Low-pass to high-pass transformation LPF \rightarrow HPF

- Variable substitution for LPF \rightarrow HPF:

$$
\omega \leftarrow-\frac{\omega_{c}}{\omega}
$$

High-pass transformation LPF \rightarrow HPF

- Variable substitution for LPF \rightarrow HPF :

$$
\begin{gathered}
\omega \leftarrow-\frac{\omega_{c}}{\omega} \\
j \cdot X_{k}=-j \cdot \frac{\omega_{c}}{\omega} \cdot L_{k}=\frac{1}{j \cdot \omega \cdot C_{k}^{\prime}} \quad j \cdot B_{k}=-j \cdot \frac{\omega_{c}}{\omega} \cdot C_{k}=\frac{1}{j \cdot \omega \cdot L_{k}^{\prime}}
\end{gathered}
$$

- Impedance scaling can be included

$$
C_{k}^{\prime}=\frac{1}{R_{0} \cdot \omega_{c} \cdot L_{k}} \quad L_{k}^{\prime}=\frac{R_{0}}{\omega_{c} \cdot C_{k}}
$$

- In the schematic series inductors must be replaced with series capacitors, and shunt capacitors must be replaced with shunt inductors

Bandpass Transformation LPF \rightarrow BPF

- Variable substitution for LPF \rightarrow BPF:

$$
\omega \leftarrow \frac{\omega_{0}}{\omega_{2}-\omega_{1}}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=\frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)
$$

- where we use the fractional bandwidth of the passband and the center frequency

$$
\Delta=\frac{\omega_{2}-\omega_{1}}{\omega_{0}} \quad \omega_{0}=\sqrt{\omega_{1} \cdot \omega_{2}}
$$

Bandpass Transformation LPF \rightarrow BPF

$$
\begin{aligned}
\omega=\omega_{0} \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=\frac{1}{\Delta}\left(\frac{\omega_{0}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{0}}\right)=0 \quad \omega=-\omega_{0} \rightarrow \frac{1}{\Delta}\left(\frac{-\omega_{0}}{\omega_{0}}-\frac{\omega_{0}}{-\omega_{0}}\right)=0 \\
\omega=\omega_{1} \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=\frac{1}{\Delta}\left(\frac{\omega_{1}^{2}-\omega_{0}^{2}}{\omega_{0} \cdot \omega_{1}}\right)=-1 \\
\omega=\omega_{2} \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=\frac{1}{\Delta}\left(\frac{\omega_{2}^{2}-\omega_{0}^{2}}{\omega_{0} \cdot \omega_{2}}\right)=1
\end{aligned}
$$

Bandpass Transformation LPF \rightarrow BPF

$$
\begin{aligned}
& j \cdot X_{k}=\frac{j}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) \cdot L_{k}=j \cdot \frac{\omega \cdot L_{k}}{\Delta \cdot \omega_{0}}-j \cdot \frac{\omega_{0} \cdot L_{k}}{\Delta \cdot \omega}=j \cdot \omega \cdot L_{k}^{\prime}-j \frac{1}{\omega \cdot C_{k}^{\prime}} \\
& j \cdot B_{k}=\frac{j}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) \cdot C_{k}=j \cdot \frac{\omega \cdot C_{k}}{\Delta \cdot \omega_{0}}-j \cdot \frac{\omega_{0} \cdot C_{k}}{\Delta \cdot \omega}=j \cdot \omega \cdot C_{k}^{\prime}-j \frac{1}{\omega \cdot L_{k}^{\prime}}
\end{aligned}
$$

- A series inductor in the prototype filter is transformed to a series LC circuit

$$
L_{k}^{\prime}=\frac{L_{k}}{\Delta \cdot \omega_{0}} \quad C_{k}^{\prime}=\frac{\Delta}{\omega_{0} \cdot L_{k}}
$$

- A shunt capacitor in the prototype filter is transformed to a shunt LC circuit

$$
L_{k}^{\prime}=\frac{\Delta}{C_{k} \cdot \omega_{0}} \quad C_{k}^{\prime}=\frac{C_{k}}{\omega_{0} \cdot \Delta}
$$

Bandstop Transformation LPF \rightarrow BSF

$$
\omega \leftarrow-\Delta \cdot\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1} \quad \omega=\omega_{0} \rightarrow \frac{-\Delta}{\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)}=\frac{-\Delta}{\left(\frac{\omega_{0}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{0}}\right)} \rightarrow \pm \infty
$$

Bandstop Transformation LPF \rightarrow BSF

$$
\omega \leftarrow-\Delta \cdot\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1}
$$

- A series inductor in the prototype filter is transformed to a shunt LC circuit

$$
L_{k}^{\prime}=\frac{\Delta \cdot L_{k}}{\omega_{0}} \quad C_{k}^{\prime}=\frac{1}{\omega_{0} \cdot \Delta \cdot L_{k}}
$$

- A shunt capacitor in the prototype filter is transformed to a series LC circuit

$$
L_{k}^{\prime}=\frac{1}{\Delta \cdot \omega_{0} \cdot C_{k}} \quad C_{k}^{\prime}=\frac{\Delta \cdot C_{k}}{\omega_{0}}
$$

Summary of Prototype Filter Transformations

Example

- Design a 3 rd order bandpass filter with 0.5 dB ripples in passband. The center frequency of the filter should be 1 GHz . The fractional bandwidth of the passband should be 10%, and the impedance 50Ω.

$$
\begin{aligned}
\omega_{0} & =2 \cdot \pi \cdot 1 G H z=6.283 \cdot 10^{9} \mathrm{rad} / \mathrm{s} \\
\Delta & =0.1
\end{aligned}
$$

LPF Prototype

- 0.5 dB equal-ripple table or design formulas:
- $\mathrm{g} 1=1.5963=\mathrm{L}_{1} / \mathrm{C}_{3}$,
- $\mathrm{g} 2=1.0967=\mathrm{C} 2 / \mathrm{L} 4$,
- $93=1.5963=L_{3} / C_{5}$,
- $94=1.000=R_{L}$

LPF Prototype

$-\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=\omega_{0} / 2 \pi=0.159 \mathrm{~Hz}\right)$

Bandpass Transformation / BPF

$$
\begin{array}{cl}
\omega_{0}=2 \cdot \pi \cdot 1 \mathrm{GHz}=6.283 \cdot 10^{9} \mathrm{rad} / \mathrm{s} & \Delta=\frac{\Delta \omega}{\omega_{0}}=\frac{\Delta f}{f_{0}}=0.1 \quad R_{0}=50 \Omega \\
\mathrm{~g} 1=1.5963=\mathrm{L} 1, & \mathrm{~g} 3=1.5963=\mathrm{L}_{3}, \\
\mathrm{~g} 2=1.0967=\mathrm{C} 2, & \mathrm{~g} 4=1.000=\mathrm{R}_{\mathrm{L}} \\
L_{1}^{\prime}=\frac{L_{1} \cdot R_{0}}{\Delta \cdot \omega_{0}}=127.0 \mathrm{nH} & C_{1}^{\prime}=\frac{\Delta}{\omega_{0} \cdot L_{1} \cdot R_{0}}=0.199 \mathrm{pF} \\
L_{2}^{\prime}=\frac{\Delta \cdot R_{0}}{\omega_{0} \cdot C_{2}}=0.726 \mathrm{nH} & C_{2}^{\prime}=\frac{C_{2}}{\Delta \cdot \omega_{0} \cdot R_{0}}=34.91 \mathrm{pF} \\
L_{3}^{\prime}=\frac{L_{3} \cdot R_{0}}{\Delta \cdot \omega_{0}}=127.0 \mathrm{nH} & C_{3}^{\prime}=\frac{\Delta}{\omega_{0} \cdot L_{3} \cdot R_{0}}=0.199 \mathrm{pF}
\end{array}
$$

ADS

Microwave Filters Implementation

Microwave Filters Implementation

- The lumped-element (L, C) filter design generally works well only at low frequencies (RF):
- lumped-element inductors and capacitors are generally available only for a limited range of values, and can be difficult to implement at microwave frequencies
- difficulty to obtain the (very low) required tolerance for elements

Filter specifications

Richards' Transformation

- Impedance seen at the input of a line loaded with Z_{L}

$$
Z_{i n}=Z_{0} \cdot \frac{Z_{L}+j \cdot Z_{0} \cdot \tan \beta \cdot l}{Z_{0}+j \cdot Z_{L} \cdot \tan \beta \cdot l}
$$

- We prefer the load impedance to be:
- open circuit $\left(Z_{L}=\infty\right) \quad Z_{i, o c}=-j \cdot Z_{0} \cdot \cot \beta \cdot l$
- short circuit $\left(Z_{\mathrm{L}}=0\right) \quad Z_{i, s c}=j \cdot Z_{0} \cdot \tan \beta \cdot l$
- Input impedance is:
- capacitive $\quad Z_{\text {in,oc }}=j \cdot X_{C}=\frac{1}{j \cdot B_{C}}$

$$
Z_{0} \leftrightarrow \frac{1}{C} \quad \tan \beta \cdot l \leftrightarrow \omega
$$

- inductive

$$
Z_{i n, s c}=j \cdot X_{L} \quad Z_{0} \leftrightarrow L \quad \tan \beta \cdot l \leftrightarrow \omega
$$

Richards' Transformation

- Variable substitution

$$
\Omega=\tan \beta \cdot l=\tan \left(\frac{\omega \cdot l}{v_{p}}\right)
$$

- With this variable substitution we define:
- reactance of an inductor

$$
j \cdot X_{L}=j \cdot \Omega \cdot L=j \cdot L \cdot \tan \beta \cdot l
$$

- susceptance of a capacitor

$$
j \cdot B_{C}=j \cdot \Omega \cdot C=j \cdot C \cdot \tan \beta \cdot l
$$

- The equivalent filter in Ω has a cutoff frequency at:

$$
\Omega=1=\tan \beta \cdot l \rightarrow \beta \cdot l=\frac{\pi}{4} \quad \rightarrow \quad l=\frac{\lambda}{8}
$$

Richards' Transformation

- allows implementation of the inductors and capacitors with lines after the transformation of the LPF prototype to the required type (LPF/HPF/BPF/BSF)

Richards' Transformation

- By choosing the open-circuited or short-circuited lines to be $\lambda / 8$ at the desired cutoff frequency $\left(\omega_{c}\right)$ and the corresponding characteristic impedances (L/C from LPF prototype) we will obtain at frequencies around ω_{c} a behavior similar to that of the prototype filter.
- At frequencies far from ω_{c} the behavior of the filter will no longer be identical to that of the prototype (in specific situations the correct behavior must be verified)
- Frequency scaling is simplified: choosing the appropriate physical length of the line to have the electrical length $\lambda / 8$ at the desired cutoff frequency
- All lines will have equal electrical lengths ($\lambda / 8$) and thus comparable physical lengths, so the lines are called commensurate lines

Richards' Transformation

- At the frequency $\omega=2 \cdot \omega_{c}$ the lines will be $\lambda / 4$ long

$$
l=\frac{\lambda}{4} \Rightarrow \beta \cdot l=\frac{\pi}{2} \Rightarrow \tan \beta \cdot l \rightarrow \infty
$$

- an supplemental attenuation pole will occur at $2 \cdot \omega_{c}$ (LPF):
- inductances (usually in series) $Z_{i n, s c}=j \cdot Z_{0} \cdot \tan \beta \cdot l \rightarrow \infty$
- capacitances (usually shunt) $\quad Z_{i n, o c}=-j \cdot Z_{0} \cdot \cot \beta \cdot l \rightarrow 0$

Richards' Transformation

- the periodicity of tan function implies the periodicity of the filter implemented with lines
- the filter response will be repeated every $4 \cdot \omega_{c}$

$$
\tan (\alpha+\pi)=\tan \alpha
$$

$$
\begin{aligned}
& \left.\beta \cdot l\right|_{\omega=\omega_{c}}=\frac{\pi}{4} \Rightarrow \frac{\omega_{c} \cdot l}{v_{p}}=\frac{\pi}{4} \Rightarrow \pi=\frac{\left(4 \cdot \omega_{c}\right) \cdot l}{v_{p}} \\
& Z_{i n}(\omega)=Z_{i n}\left(\omega+4 \cdot \omega_{c}\right) \Rightarrow P_{L R}(\omega)=P_{L R}\left(\omega+4 \cdot \omega_{c}\right) \\
& P_{L R}\left(4 \cdot \omega_{c}\right)=P_{L R}(0) \quad P_{L R}\left(3 \cdot \omega_{c}\right)=P_{L R}\left(-\omega_{c}\right) \quad P_{L R}\left(5 \cdot \omega_{c}\right)=P_{L R}\left(\omega_{c}\right)
\end{aligned}
$$

Example

- Low-pass filter $4^{\text {th }}$ order, 4 GHz cutoff frequency, maximally flat design (working with 50Ω source and load)
- maximally flat table or formulas:
- $\mathrm{g} 1=0.7654=\mathrm{L} 1$
- $\mathrm{g} 2=1.8478=\mathrm{C}_{2}$
- $\mathrm{g} 3=1.8478=\mathrm{L} 3$
- $94=0.7654=C_{4}$
- g5 = 1 (does not need supplemental impedance matching - required only for even order equal-ripple filters)

LPF Prototype

Lumped elements

$$
\begin{array}{ll}
\omega_{c}=2 \cdot \pi \cdot 4 \mathrm{GHz}=2.5133 \cdot 10^{10} \mathrm{rad} / \mathrm{s} \\
\mathrm{~g} 1 & =0.7654=\mathrm{L} 1, \\
\mathrm{~g} 2 & =1.8478=\mathrm{C} 2, \\
\mathrm{~g} 3 & =1.8478=\mathrm{L}_{3}, \\
& \mathrm{~g} 4=0.7654=\mathrm{C} 4, \\
\mathrm{~g} 5 & =1=\mathrm{RL}
\end{array}
$$

$$
\begin{array}{ll}
L_{1}^{\prime}=\frac{R_{0} \cdot L_{1}}{\omega_{c}}=1.523 n H & C_{2}^{\prime}=\frac{C_{2}}{R_{0} \cdot \omega_{c}}=1.470 \mathrm{pF} \\
L_{3}^{\prime}=\frac{R_{0} \cdot L_{3}}{\omega_{c}}=3.676 \mathrm{nH} & C_{4}^{\prime}=\frac{C_{4}}{R_{0} \cdot \omega_{c}}=0.609 \mathrm{pF}
\end{array}
$$

Lumped elements - ADS

Richards' Transformation

- LPF Prototype parameters:
" $\mathrm{g} 1=0.7654=\mathrm{L} 1$
- $\mathrm{g} 2=1.8478=\mathrm{C} 2$
- $\mathrm{g} 3=1.8478=\mathrm{L} 3$
- $\mathrm{g}_{4}=0.7654=\mathrm{C}_{4}$
- Normalized line impedances
- z1 = $0.7654=$ series $/$ short circuit

$$
Z_{0} \leftrightarrow \frac{1}{C}
$$

- $z 2=1 / 1.8478=0.5412=$ shunt $/$ open circuit
- z3 $=1.8478=$ series / short circuit
$Z_{0} \leftrightarrow L$
- \quad Z4 $=1 / 0.7654=1.3065=$ shunt / open circuit
- Impedance scaling by multiplying with $\mathrm{Zo}=50 \Omega$
- All lines must have the length equal to $\lambda / 8$ (electrical length $\mathrm{E}=45^{\circ}$) at 4 GHz

Richards' Transformation - ADS

Richards' Transformation

- Filters implemented with Richards' Transformation
- beneficiate from the supplemental pole at $2 \cdot \omega_{c}$
- have the major disadvantage of frequency periodicity, a supplemental non-periodic LPF must be inserted if needed

Equal-ripple prototype

- For even N order of the filter ($N=2,4,6,8 \ldots$) equal-ripple filters must closed by a nonstandard load impedance $\mathrm{g}_{\mathrm{N}+1} \neq 1$
- If the application doesn't allow this, supplemental impedance matching is required (quarter-wave transformer, binomial ...) to $\mathrm{g}_{\mathrm{L}}=1$

$$
\left.g_{N+1} \neq 1 \rightarrow R \neq R_{0} \quad \text { (50 }\right)
$$

Observation: even order equal-ripple

- Same filter, 3 dB equal-ripple
- 3dB equal-ripple tables or formulas:

$$
\begin{aligned}
\mathrm{g} 1 & =3.4389=\mathrm{L} 1 \\
\mathrm{~g} 2 & =0.7483=\mathrm{C}_{2} \\
\mathrm{~g} & =4.3471=\mathrm{L} 3 \\
\mathrm{~g} 4 & =0.5920=\mathrm{C}_{4} \\
\mathrm{~g} 5 & =5.8095=\mathrm{R}_{\mathrm{L}}
\end{aligned}
$$

- Line impedances
- $\mathrm{Z}_{1}=3.4389 \cdot 50 \Omega=171.945 \Omega=$ series $/$ short circuit
- $Z 2=50 \Omega / 0.7483=66.818 \Omega=$ shunt $/$ open circuit
- $Z_{3}=4.3471 \cdot 50 \Omega=217.355 \Omega=$ series $/$ short circuit
- $Z_{4}=50 \Omega / 0.5920=84.459 \Omega=$ shunt $/$ open circuit
- $\mathrm{RL}=5.8095 \cdot 50 \Omega=295.475 \Omega=$ load

Even order equal-ripple - ADS

Observation: even order equal-ripple

- Even order equal-ripple filters need output matching towards 50Ω for precise results. Example:

Kuroda's Identities

- Filters implemented with the Richards' transformation have certain disadvantages in terms of practical use
- Kuroda's Identities/Transformations can eliminate some of these disadvantages
- We use additional line sections to obtain systems that are easier to implement in practice
- The additional line sections are called unit elements and have lengths of $\lambda / 8$ at the desired cutoff frequency $\left(\omega_{c}\right)$ thus being commensurate with the stubs implementing the inductors and capacitors.

Kuroda's Identities

- Kuroda's Identities perform any of the following operations:
- Physically separate transmission line stubs
- Transform series stubs into shunt stubs, or vice versa
- Change impractical characteristic impedances into more realizable values ($\sim 50 \Omega$)

Kuroda's Identities

- 4 circuit equivalents (a, b)
- each box represents a unit element, or transmission line, of the indicated characteristic impedance and length $\left(\lambda / 8\right.$ at $\left.\omega_{c}\right)$. The inductors and capacitors represent short-circuit and open-circuit stubs $\frac{Z_{1}}{n^{2}}$

(a)

(b)

Kuroda's Identities

- 4 circuit equivalents (c,d)
- each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda / 8$ at ω_{c}). The inductors and capacitors represent short-circuit and open-circuit stubs

(d)

Kuroda's Identities

- In all Kuroda's Identities:
- n :

$$
n^{2}=1+\frac{Z_{2}}{Z_{1}}
$$

- The inductors and capacitors represent shortcircuit and open-circuit stubs resulted from Richards' transformation ($\lambda / 8$ at ω_{c}).
- Each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda / 8$ at ω_{c}).

First Kuroda's Identity

Figure 8.35

First Kuroda's Identity - Proof

- ABCD matrix, L5

$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ Y & 1\end{array}\right] \quad\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}\cos \beta \cdot l & j \cdot Z_{0} \cdot \sin \beta \cdot l \\ j \cdot Y_{0} \cdot \sin \beta \cdot l & \cos \beta \cdot l\end{array}\right]$

First Kuroda's Identity - Proof

$$
\begin{aligned}
& \Omega=\tan \beta \cdot l \\
& \cos \beta \cdot l=\frac{1}{\sqrt{1+\Omega^{2}}} \quad \sin \beta \cdot l=\frac{\Omega}{\sqrt{1+\Omega^{2}}} \\
& Z_{i n, o c}=-j \cdot Z_{2} \cdot \cot \beta \cdot l=-j \cdot \frac{Z_{2}}{\Omega}
\end{aligned}
$$

$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \frac{j \cdot \Omega}{Z_{2}} & 1\end{array}\right] \cdot\left[\begin{array}{cc}\frac{1}{\sqrt{1+\Omega^{2}}} & j \cdot Z_{1} \cdot \frac{\Omega}{\sqrt{1+\Omega^{2}}} \\ j \cdot \frac{1}{Z_{1}} \cdot \frac{\Omega}{\sqrt{1+\Omega^{2}}} & \frac{1}{\sqrt{1+\Omega^{2}}}\end{array}\right]$
$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}1 & 0 \\ \frac{j \cdot \Omega}{Z_{2}} & 1\end{array}\right] \cdot\left[\begin{array}{cc}1 & j \cdot \Omega \cdot Z_{1} \\ \frac{j \cdot \Omega}{Z_{1}} & 1\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}1 & j \cdot \Omega \cdot Z_{1} \\ j \cdot \Omega \cdot\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right) & 1-\Omega^{2} \cdot \frac{Z_{1}}{Z_{2}}\end{array}\right]$

First Kuroda's Identity - Proof

First Kuroda's Identity - Proof

$$
\begin{aligned}
& \Omega=\tan \beta \cdot l \\
& \cos \beta \cdot l=\frac{1}{\sqrt{1+\Omega^{2}}} \quad \sin \beta \cdot l=\frac{\Omega}{\sqrt{1+\Omega^{2}}} \\
& Z_{i n, s c}=j \cdot\left(\frac{Z_{1}}{n^{2}}\right) \cdot \tan \beta \cdot l=\frac{j \cdot \Omega \cdot Z_{1}}{n^{2}}
\end{aligned}
$$

Unit
$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}\frac{\text { element }}{1} & j \cdot \frac{Z_{2}}{n^{2}} \cdot \frac{\Omega}{\sqrt{1+\Omega^{2}}} \\ j \cdot \frac{n^{2}}{Z_{2}} \cdot \frac{\Omega}{\sqrt{1+\Omega^{2}}} & \frac{1}{\sqrt{1+\Omega^{2}}}\end{array}\right] \cdot\left[\begin{array}{cc}1 & \frac{j \cdot \Omega \cdot Z_{1}}{n^{2}} \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}1 & j \cdot \Omega \cdot \frac{Z_{2}}{n^{2}} \\ \frac{j \cdot \Omega \cdot n^{2}}{Z_{2}} & 1\end{array}\right] \cdot\left[\begin{array}{cc}1 & j \cdot \Omega \cdot \frac{Z_{1}}{n^{2}} \\ 0 & 1\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}1 & j \cdot \frac{\Omega}{n^{2}} \cdot\left(Z_{1}+Z_{2}\right) \\ \frac{j \cdot \Omega \cdot n^{2}}{Z_{2}} & 1-\Omega^{2} \cdot \frac{Z_{1}}{Z_{2}}\end{array}\right]$

First Kuroda's Identity - Proof

- First circuit

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[j \cdot \Omega \cdot\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right) \begin{array}{c}
j \cdot \Omega \cdot Z_{1} \\
1-\Omega^{2} \cdot \frac{Z_{1}}{Z_{2}}
\end{array}\right]
$$

- Second circuit

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}
1 & j \cdot \frac{\Omega}{n^{2}} \cdot\left(Z_{1}+Z_{2}\right) \\
\frac{j \cdot \Omega \cdot n^{2}}{Z_{2}} & 1-\Omega^{2} \cdot \frac{Z_{1}}{Z_{2}}
\end{array}\right]
$$

- Results are identical if we choose

$$
n^{2}=1+\frac{Z_{2}}{Z_{1}}
$$

The other 3 identities can be proved in the same way

(Same) Example

- Low-pass filter $4^{\text {th }}$ order, 4 GHz cutoff frequency, maximally flat design (working with 50Ω source and load)
- maximally flat table or formulas:
- $\mathrm{g} 1=0.7654=\mathrm{L} 1$
- $\mathrm{g} 2=1.8478=\mathrm{C}_{2}$
- $\mathrm{g} 3=1.8478=\mathrm{L} 3$
- $94=0.7654=C_{4}$
- g5 = 1 (does not need supplemental impedance matching - required only for even order equal-ripple filters)

Example

- Apply Richards's transformation

- Problems:
- the series stubs would be very difficult to implement in microstrip line form
- in microstrip technology it is preferable to have open-circuit stubs (short-circuit requires a viahole to the ground plane)
1" the 4 stubs are physically connected at the same point, an implementation that eliminates/reduces the coupling between these lines is impossible
- not the case here, but sometimes the normalized impedances are much different from 1. Most circuit technologies are designed for 50Ω lines

Example

- In all 4 Kuroda's Identities we always have a circuit with a series line section (not present in initial circuit):
- we add unit elements $(z=1, I=\lambda / 8)$ at the ends of the filter (these redundant elements do not affect filter performance since they are matched to $z=1$, both source and load)
- we apply one of the Kuroda's Identities at both ends and continue (add unit ...)
- we can stop the procedure when we have a series line section between all the stubs from Richards' transformation

Example

- Apply:
- Kuroda 2 (L, Z known $\rightarrow C, Z$) on the left side
- Kuroda 1 (C,Z known \rightarrow L,Z) on the right side

Example

- We add another unit element on the right side and apply Kuroda 2 twice

Example

- Impedance scaling (multiply by 50Ω)

Kuroda's Identities - ADS

freq, GHz

Examples

Figure 8.55
Courtesy of LNX Corporation, Salem, N.H.

Examples

Impedance and Admittance Inverters

- Richards' transformation and Kuroda's identities are useful especially for low-pass filters in technologies where the series stubs would be very difficult/ impossible to implement (microstrip)
- In the case of other filters (example $3^{\text {rd }}$ order BPF):
- series inductance can be implemented using K1-K2
- series capacitance cannot be implemented using shunt stubs

Impedance and Admittance Inverters

- For cases where Richards + Kuroda do not offer practical solutions we use circuits called impedance and admittance inverters

$$
Z_{i n}=\frac{K^{2}}{Z_{L}}
$$

$$
Y_{i n}=\frac{J^{2}}{Y_{L}}
$$

Impedance inverters
Admittance inverters

Impedance and Admittance Inverters

- The simplest example of impedance and admittance inverter is the quarter-wave transformer (L4)

Impedance and Admittance Inverters

- Impedance/admittance inverters can be used to change the structure of a designed filter to a realizable form
- For example a $2^{\text {nd }}$ order BSF

Impedance and Admittance Inverters

- The series elements can be eliminated/replaced using an admittance inverter

Impedance and Admittance Inverters

- The equivalence of the two schematics (when looking from the left) is proofed by obtaining the same input admittance

$L_{n} \cdot C_{n}=L_{n}^{\prime} \cdot C_{n}^{\prime}=\frac{1}{\omega_{0}^{2}} \Rightarrow \frac{\frac{1}{Z_{0}^{2}} \cdot \sqrt{\frac{L_{1}}{C_{1}}}=\sqrt{\frac{C_{1}^{\prime}}{L_{1}^{\prime}}}}{\sqrt{\frac{L_{2}}{C_{2}}}=\sqrt{\frac{L_{2}^{\prime}}{C_{2}^{\prime}}}} \Rightarrow Y=Y^{\prime}, \quad \Rightarrow \quad Y$,
- A similar result can be obtained for a bandpass filter

Impedance and Admittance Inverters

- The complete equivalence (when looking from both sides) is obtained by enclosing the series LC circuit between two admittance inverters

- A series LC circuit inserted in series in the circuit can be replaced by a shunt LC circuit inserted in parallel enclosed between 2 admittance inverters
- A shunt LC circuit inserted in series in the circuit can be replaced by a series LC circuit inserted in parallel enclosed between 2 admittance inverters

Practical implementations of impedance/admittance inverters

- Most often the quarter-wave transformer is used

$$
Z_{0}=K
$$

$$
Y_{0}=J
$$

- Implementation with capacitor networks

$K=1 / \omega C$

$$
J=\omega C
$$

Practical implementations of

 impedance/admittance inverters- Implementation with transmission lines and reactive elements

Prototype filters using inverters

- Using impedance/admittance inverters we can implement prototype filters using a single type of reactive elements - Shunt C replaced by series L enclosed between 2 inverters

$$
K_{0,1}=\left.\sqrt{\frac{R_{A} \cdot L_{a, 1}}{g_{0} \cdot g_{1}}} \quad K_{k, k+1}\right|_{k=1, n-1}=\sqrt{\frac{L_{a, k} \cdot L_{a, k+1}}{g_{k} \cdot g_{k+1}}} \quad K_{n, n+1}=\sqrt{\frac{L_{a, n} \cdot R_{B}}{g_{n} \cdot g_{n+1}}}
$$

Prototype filters using inverters

- Using impedance/admittance inverters we can implement prototype filters using a single type of reactive elements
- Series L replaced by shunt C enclosed between 2 inverters

$$
J_{0,1}=\left.\sqrt{\frac{G_{A} \cdot C_{a, 1}}{g_{0} \cdot g_{1}}} \quad J_{k, k+1}\right|_{k=1, n-1}=\sqrt{\frac{C_{a, k} \cdot C_{a, k+1}}{g_{k} \cdot g_{k+1}}} \quad J_{n, n+1}=\sqrt{\frac{C_{a, n} \cdot g_{B}}{g_{n} \cdot g_{n+1}}}
$$

Prototype filters using inverters

- For prototype filters using inverters formulas we have $2 \cdot \mathrm{~N}+1$ parameters and $\mathrm{N}+1$ equations (to ensure the equivalence of the 2 schematics) so N parameters can be chosen freely
- convenient values for the reactance can be chosen, and the required inverters will be computed from the equivalence equations or,
- convenient inverters can be chosen, and the required reactance values will be computed from the equivalence equations

BPF and BSF using inverters

- The same principle can be applied to the BPF and BSF filters, those can be implemented using $\mathrm{N}+1$ inverters and N resonators (series or shunt LC circuits with resonant frequency ω_{o}) connected either in series or in parallel enclosed between 2 inverters
- BPF are implemented with
- series LC circuits connected in series between inverters
* shunt LC circuits connected in parallel between inverters
- BSF are implemented with
- shunt LC circuits connected in series between inverters
- series LC circuits connected in parallel between inverters

Lines as resonators

- The impedance of short-circuited or opencircuited line (stub) shows a resonant behavior that can be used to implement required resonators

$$
Z_{i n}=Z_{0} \cdot \frac{Z_{L}+j \cdot Z_{0} \cdot \tan \beta \cdot l}{Z_{0}+j \cdot Z_{L} \cdot \tan \beta \cdot l}
$$

$$
Z_{i n, s c}=j \cdot Z_{0} \cdot \tan \beta \cdot l
$$

$$
Z_{i n, o c}=-j \cdot Z_{0} \cdot \cot \beta \cdot l
$$

Lines as resonators

- Short-circuited line
- For the frequency at which I $=\lambda / 4\left(\omega_{0}\right)$ the line behaves as an shunt LC resonator circuit
- the line shows capacitive behavior for lower frequencies ($1>\lambda / 4$)
- the line shows inductive behavior for higher frequencies ($1<\lambda / 4$)
- Similar discussion for the open circuited line (equivalent to a series LC resonator around the frequency at which $1=\lambda / 4$)

BPF/BSP design formulas

- When the admittance inverters are implemented with quarter-wave transformers with Zo characteristic impedance
- BPF - short-circuited shunt stubs with I = $\lambda / 4$

$$
Z_{0 n} \approx \frac{\pi \cdot Z_{0} \cdot \Delta}{4 \cdot g_{n}}
$$

- BSF - open-circuited shunt stubs with I $=\lambda / 4$

$$
Z_{0 n} \approx \frac{4 \cdot Z_{0}}{\pi \cdot g_{n} \cdot \Delta}
$$

Example

- Similar to a project assignment
- Follows the amplifier designed as in L8
- $4^{\text {th }}$ order bandpass filter, fo $=5 \mathrm{GHz}$, fractional bandwidth of the passband 10%
- maximally flat table or formulas for g_{n} :

n	g_{n}	$\mathrm{Z}_{\text {on }}(\Omega)$
1	0.7654	5.131
2	1.8478	2.125
3	1.8478	2.125
4	0.7654	5.131

ADS - BPF

ADS-BPF

Example

$$
l=\frac{\lambda}{4} \Rightarrow \beta \cdot l=\frac{\pi}{2}
$$

- Disadvantages of the filters using impedance inverters and lines as resonators:
- short-circuited stubs (via-hole) for BPF
- often the characteristic impedances for the stubs have values difficult to implement (2.125Ω)

Coupled Line Filters

- A parallel coupled line section model is obtained by even/odd mode analysis
- Even and odd modes are characterized by the characteristic even/odd mode impedances whose required values will impose the lines' geometry (width / distance between lines, depending on the line technology we use)

Coupled Lines

b) EVEN MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

Even mode - characterizes the common mode signal on the two lines
Odd mode - characterizes the differential mode signal between the two lines

- Each of the two modes is

c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC) characterized by different characteristic impedances

Coupled Line Filters

Coupled Line Filters

- Bandpass filter with resonance at $\theta=\pi / 2(l=\lambda / 4)$

Figure 8.44
© John Wiley \& Sons, Inc. All rights reserved.

Coupled Line Filters

- We get a $\mathrm{N}^{\text {th }}$ order filter with $\mathrm{N}+1$ parallel coupled line section

(a)

Coupled Line Filters

- Equivalent circuits for
- transmission lines of length 2θ
" admittance inverters

Coupled Line Filters N=2

- We get a $2^{\text {nd }}$ order BPF behavior cu 3 coupled lines sections

(f)

Coupled Line Filters design formulas

- Compute the inverters from prototype parameters
$Z_{0} \cdot J_{1}=\sqrt{\frac{\pi \cdot \Delta}{2 \cdot g_{1}}} \quad Z_{0} \cdot J_{n}=\frac{\pi \cdot \Delta}{2 \cdot \sqrt{g_{n-1} \cdot g_{n}}}, n=\overline{2, N} \quad Z_{0} \cdot J_{N+1}=\sqrt{\frac{\pi \cdot \Delta}{2 \cdot g_{N} \cdot g_{N+1}}}$
Compute coupled line parameters Zoe/Zoo (all of length $l=\lambda / 4$)

$$
\begin{array}{ll}
Z_{0 e, n}=Z_{0} \cdot\left[1+J_{n} \cdot Z_{0}+\left(J_{n} \cdot Z_{0}\right)^{2}\right] & \\
Z_{0 o, n}=Z_{0} \cdot\left[1-J_{n} \cdot Z_{0}+\left(J_{n} \cdot Z_{0}\right)^{2}\right] &
\end{array}
$$

Example

- Similar to a project assignment
- Follows the amplifier designed as in L8
- $4^{\text {th }}$ order bandpass filter, fo $=5 \mathrm{GHz}$, fractional bandwidth of the passband 10%
- 0.5 dB equal-ripple table for g_{n} followed by filter design formulas

n	g	ZoJn	Zoe	Zoo
1	1.6703	0.306664	70.04	39.37
2	1.1926	0.111295	56.18	45.05
3	2.3661	0.09351	55.11	45.76
4	0.8419	0.111294	56.18	45.05
5	1.9841	0.306653	70.03	39.37

ADS - coupled line BPF

 freq, GHz

ADS - coupled line BPF

m1
freq $=4.750 \mathrm{GHz}$ $d B(S(2,1))=-0.620$
m2
freq=5.250GHz $\mathrm{dB}(\mathrm{S}(2,1))=-0.620$

10
$-10-$
$-20-$
$-30-$
$-40-$
$-50-$
$-60-$
3.5

Examples

Bandpass Filters Using Capacitively Coupled Series Resonators

- The gaps between the resonators $(\sim \lambda / 2)$ generate a capacitive coupling between two resonators and can be approximated as series capacitors

(a)

(b)

Bandpass Filters Using Capacitively Coupled Series Resonators

- From the real physical length of the resonators, some part is used implement a admittance inverter (the remainder $\phi=\pi, l=\lambda / 2$, resonator)

(c)

(d)

Bandpass Filters Using Capacitively Coupled Series Resonators design

- Compute the inverters (similar to coupled lines)
$Z_{0} \cdot J_{1}=\sqrt{\frac{\pi \cdot \Delta}{2 \cdot g_{1}}} \quad Z_{0} \cdot J_{n}=\frac{\pi \cdot \Delta}{2 \cdot \sqrt{g_{n-1} \cdot g_{n}}}, n=\overline{2, N} \quad Z_{0} \cdot J_{N+1}=\sqrt{\frac{\pi \cdot \Delta}{2 \cdot g_{N} \cdot g_{N+1}}}$
- Compute capacitive susceptances

$$
B_{n}=\frac{J_{n}}{1-\left(Z_{0} \cdot J_{n}\right)^{2}}, n=\overline{1, N+1}
$$

- Compute the line lengths that must be "borrowed" to implement the inverters

$$
\phi_{n}=-\tan ^{-1}\left(2 \cdot Z_{0} \cdot B_{n}\right), n=\overline{1, N+1} \quad \phi_{n}<0, n=\overline{\overline{1, N+1}}
$$

- Compute the actual length of the lines ($\lambda / 2+$ borr.)

$$
\theta_{i}=\pi+\frac{1}{2} \cdot\left(\phi_{i}+\phi_{i+1}\right)=\pi-\frac{1}{2} \cdot\left[\tan ^{-1}\left(2 \cdot Z_{0} \cdot B_{i}\right)+\tan ^{-1}\left(2 \cdot Z_{0} \cdot B_{i+1}\right)\right] i=\overline{1, N}
$$

Equivalent circuits for short sections of transmission lines

- ABCD matrix (L4)
- short line , model with lumped elements is valid - $A=\cos \beta \cdot l \quad B=j \cdot Z_{0} \cdot \sin \beta \cdot l$

$$
\stackrel{Z_{0}, \beta}{\rightleftarrows} C C=j \cdot Y_{0} \cdot \sin \beta \cdot l \quad D=\cos \beta \cdot l
$$

Equivalent circuits for short sections of transmission lines

- The shunt element is capacitive

$$
Z_{3}=\frac{1}{j \cdot Y_{0} \cdot \sin \beta \cdot l}
$$

- Series elements are equal, and inductive

$$
\begin{aligned}
& \cos \beta \cdot l=1+\frac{Z_{1}}{Z_{3}}=1+\frac{Z_{2}}{Z_{3}} \\
& Z_{1}=Z_{2}=Z_{3} \cdot(\cos \beta \cdot l-1)=-j \cdot Z_{0} \cdot \frac{\cos \beta \cdot l-1}{\sin \beta \cdot l}=j \cdot Z_{0} \cdot \tan \frac{\beta \cdot l}{2} \\
& \text { Fauivalent circuit }
\end{aligned}
$$

- Equivalent circuit

$$
\begin{aligned}
\frac{X}{2} & =Z_{0} \cdot \tan \frac{\beta \cdot l}{2} \\
B & =\frac{1}{Z_{0}} \cdot \sin \beta \cdot l
\end{aligned}
$$

Equivalent circuits for short sections of transmission lines

- depending on the characteristic impedance:
- high Zo >>

$$
X \cong Z_{0} \cdot \beta \cdot l \quad \beta \cdot l<\frac{\pi}{4} \quad Z_{0}=Z_{h}
$$

- low Zo <<

$$
B \cong Y_{0} \cdot \beta \cdot l \quad \beta \cdot l<\frac{\pi}{4} \quad Z_{0}=Z_{l}
$$

Stepped-impedance low-pass filter

- Series L, shunt C, we realize low-pass filters
- We use
- lines with high characteristic impedance to implement an series inductor

$$
\beta \cdot l=\frac{L \cdot R_{0}}{Z_{h}}
$$

- lines with low characteristic impedance to implement a shunt capacitor

$$
\beta \cdot l=\frac{C \cdot Z_{l}}{R_{0}}
$$

- usually the highest and lowest characteristic impedance that can be practically fabricated

Stepped-impedance LPF

- Not all the lines will result with the same length so the filter response is not periodic in frequency

(b)

Example

- LPF with 8 GHz cutoff frequency, $6{ }^{\text {th }}$ order. Maximum realizable impedance is 150Ω and lowest 15Ω.

n	g_{n}	L / C_{n}	Z	$\theta_{n}[r a d]$	$\theta_{n}\left[^{\circ}\right]$
1	0.5176	$0.206 p F$	15	0.155	8.90
2	1.4142	$1.407 n H$	150	0.471	27.01
3	1.9318	$0.769 p F$	15	0.580	33.21
4	1.9318	$1.922 n H$	150	0.644	36.89
5	1.4142	$0.563 p F$	15	0.424	24.31
6	0.5176	$0.515 n H$	150	0.173	9.89

ADS - Stepped-impedance LPF

ADS - Stepped-impedance LPF

ADS - Stepped-impedance LPF compared with lumped elements

Examples

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

[^0]: Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

[^1]: Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass.,1980, with permission.

