
Lecture 9 
2020/2021 



 2C/1L, MDCR 
 Attendance at minimum 7 sessions (course + 

laboratory) 
 Lectures- associate professor Radu Damian 

 Wednesday 15-17, Online, Microsoft Teams 

 E – 50% final grade 

 problems + (2p atten. lect.) + (3 tests) + (bonus 
activity) 

▪ 3p=+0.5p 

 all materials/equipments authorized 

 



 RF-OPTO 

 http://rf-opto.etti.tuiasi.ro 

 David Pozar, “Microwave Engineering”, 
Wiley; 4th edition , 2011 

 1 exam problem  Pozar 

 Photos 

 sent by email/online exam 

 used at lectures/laboratory 



 Profile photo – online “exam” 



 access to online exams requires the password 
received by email 



  many numerical values 

√ 

× 



 

Grade = Quality of the work + 

+ Quality of the submission 





 input impedance of a length l of transmission 
line with characteristic impedance Z0 , loaded 
with an arbitrary impedance ZL 
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 voltage reflection 
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 Total power delivered to the load = Incident 
power – “Reflected” power 

 Return “Loss” [dB] 

 time-average Power flow along the line 
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 The source has the ability to sent to the load a certain 
maximum power (available power) Pa 

 For a particular load the power sent to the load is  less than 
the maximum (mismatch) PL < Pa 

 The phenomenon is “as if” (model) some of the power is 
reflected Pr = Pa – PL 

 The power is a scalar ! 
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 complex numbers 
 in the complex plane 
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 a,b 
 information about signal power AND signal phase 

 Sij 
 network effect (gain) over signal power including 

phase information 
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Impedance Matching 
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Exam / Project 



 Shunt Stub 



 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation  
 “+” solution 

 

 

 “-” solution 
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 Series Stub 
 difficult to realize in single conductor line 

technologies (microstrip) 



 The sign (+/-) chosen for the series line equation 
imposes the sign used for the series stub equation 
 “+” solution 

 
 

 “-” solution 
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 Two ports in which matching influences the 
power transfer 

Pav S Pin 
Pav L PL 
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 If we can afford a 1.2dB decrease of the input gain for 
better NF,Q (Gs = 1 dB), position m1 above is better 

 We obtain better (smaller) NF 



 output constant gain circles CCCOUT: -0.4dB, -0.2dB, 0dB, +0.2dB 
 the lack of noise restrictions allows optimization for better gain (close 

to maximum – position m4) 
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 Two ways of implementing filters in microwave 
frequency range 

 microwave specific structures (coupled lines, dielectric 
resonators, periodic structures) 

 filter synthesis with lumped elements followed by 
implementation with transmission lines 

 the first strategy leads to more efficient filters 
but: 

 has lower generality 

 design is often difficult (lack of analytical relationships) 



 Filter is designed with lumped elements (L/C) 
followed by implementation with distributed 
elements (transmission lines) 

 general 

 analytical relationships easy to implement on the 
computer 

 efficient 

 The preferred procedure is insertion loss 
method 



 |Γ(ω)|2 is an even function of ω 
 
 
 
 

 Choosing M and N polynomials appropriately 
leads to a filter with a completely specified 
frequency response 
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 We control the power loss ratio/attenuation 
introduced by the filter: 

 in the passband (pass all frequencies) 

 in the stopband (reject all frequencies) 



 Attenuation 
 in passband 

 in stopband 

 most often in dB 
 Frequency range 
 passband 

 stopband  

 cutoff frequency ω1’ 
usually normalized  
(= 1) 



 We choose the right polynomials to design an 
low-pass filter (prototype) 

 The low-pass prototype are then converted  
to the desired other types of filters 

 low-pass, high-pass, bandpass, or bandstop 



 Maximally flat filters (Butterworth, binomial): 
provide the flattest possible passband response 

 Equal ripple filters (Chebyshev): provide a 
sharper cutoff but the passband response will 
have ripples 

 Elliptic function filters, they have equal-ripple 
responses in the passband as well as in the 
stopband, 

 Linear phase filters, offer linear phase response 
in the passband to avoid signal distortion 
(important in some applications) 



 



 



 Polynomial 
 
 

 For 
 
 

 attenuation increases 
at a rate of 20∙N dB/decade 

 k gives the attenuation at cutoff frequency  
(3dB cutoff imposes k = 1) 
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 Polynomial 
 
 

 For 
 
 

 attenuation increases 
at a rate of 20∙N dB/decade (also) 

 attenuation is (22N)/4 greater than the binomial 
response at any given frequency where 

 the passband ripples: 1 + k2, k gives the ripple 
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 !attenuations in dB  
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 !attenuations in dB  
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Attenuation versus normalized frequency for 
maximally flat filter prototypes 



 

Attenuation versus normalized frequency for 
equal-ripple filter prototypes (3dB) 



 

Attenuation versus normalized frequency for 
equal-ripple filter prototypes (0.5dB) 



 



 Prototype filters are: 
 Low-Pass Filters (LPF) 
 cutoff frequency ω0 = 1 rad/s (f0 = 0.159 Hz) 
 connected to a source with R = 1Ω 

 The number of reactive elements  (L/C) is the 
order of the filter (N) 

 Reactive elements are alternated: series L / 
shunt C 

 There two prototypes with the same response, a 
prototype beginning with a shunt C element, 
and a prototype beginning with a series L 
element 



 We define filter parameters gi, i=0,N+1 
 gi are the element values in the prototype 

filter 
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 Formulas for filter parameters  
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 Formulas for filter parameters (iterative) 
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 For even N order of 
the filter (N = 2, 4, 6, 
8 ...) equal-ripple 
filters must closed by 
a load impedance 
gN+1 ≠ 1 

 If the application 
doesn’t allow this, 
supplemental 
impedance matching 
is required  (quarter-
wave transformer, 
binomial ...) to gL = 1 



 Design a 3rd order bandpass filter with 0.5 
dB ripples in passband. The center frequency 
of the filter should be 1 GHz. The fractional 
bandwidth of the passband should be 10%, 
and the impedance 50Ω. 



 0.5dB equal-ripple table or design formulas: 

 g1 = 1.5963 = L1/C3, 

 g2 = 1.0967 = C2/L4, 

 g3 = 1.5963 = L3/C5, 

 g4=1.000 =RL 

 



 ω0 = 1 rad/s (f0 = ω0 / 2π = 0.159 Hz) 



 After computing prototype filter’s elements: 

 Low-Pass Filters (LPF) 

 cutoff frequency ω0 = 1 rad/s (f0 = 0.159 Hz) 

 connected to a source with R = 1Ω 

 component values can be scaled in terms of 
impedance and frequency 



 LPF Prototype is only used as an intermediate 
step 

 Low-Pass Filter (LPF) 

 cutoff frequency ω0 = 1 rad/s (f0 = 0.159 Hz) 

 connected to a source with R = 1Ω 



 To design a filter which will work with a 
source resistance of R0 we multiplying all the 
impedances of the prototype design by R0  
(" ' " denotes scaled values) 
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 changing the cutoff frequency – (fig. b) 
 changing the type (for example LPF  HPF – 

fig. c) requires also conversion 

scaling 

scaling and conversion 



 To change the cutoff frequency of a low-pass 
prototype from unity to ωc we insert a 
variable change 
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 To change the cutoff frequency of a low-pass 
prototype we insert a variable substitution: 
 
 

 Equivalent to the widening of the power loss 
filter response 
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 New element values for frequency scaling: 
 
 
 

 When both impedance and frequency scaling 
are required: 
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 Variable substitution for LPF  HPF: 
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 Variable substitution for LPF  HPF : 
 
 
 
 

 Impedance scaling can be included 
 
 

 In the schematic series inductors must be 
replaced with series capacitors, and shunt 
capacitors must be replaced with shunt inductors 
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 Variable substitution for LPF  BPF: 
 
 
 

 where we use the fractional bandwidth of the 
passband and the center frequency 
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 A series inductor in the prototype filter is 
transformed to a series LC circuit 
 
 

 A shunt capacitor in the prototype filter is 
transformed to a shunt LC circuit 
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 A series inductor in the prototype filter is 
transformed to a shunt LC circuit 
 
 

 A shunt capacitor in the prototype filter is 
transformed to a series LC circuit  
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 Design a 3rd order bandpass filter with 0.5 dB 
ripples in passband. The center frequency of 
the filter should be 1 GHz. The fractional 
bandwidth of the passband should be 10%, 
and the impedance 50Ω. 

sradGHz /10283.612 9
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 0.5dB equal-ripple table or design formulas: 

 g1 = 1.5963 = L1/C3, 

 g2 = 1.0967 = C2/L4, 

 g3 = 1.5963 = L3/C5, 

 g4=1.000 =RL 

 



 ω0 = 1 rad/s (f0 = ω0 / 2π = 0.159 Hz) 
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 The lumped-element (L, C) filter design generally 
works well only at low frequencies (RF): 

 lumped-element inductors and capacitors are generally 
available only for a limited range of values, and can be 
difficult to implement at microwave frequencies 

 difficulty to obtain the (very low) required tolerance for 
elements 



 Impedance seen at the input  of a line loaded 
with ZL 
 
 

 We prefer the load impedance to be: 
 open circuit (ZL = ∞) 

 short circuit (ZL = 0) 
 Input impedance is: 
 capacitive 

 inductive 
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 Variable substitution 
 
 

 With this variable substitution we define: 
 reactance of an inductor 

 

 susceptance of a capacitor 
 

 The equivalent filter in Ω has a cutoff frequency 
at:  
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 allows implementation of the inductors and capacitors 
with lines after the transformation of the LPF prototype to 
the required type (LPF/HPF/BPF/BSF) 



 By choosing the open-circuited or short-circuited lines 
to be λ/8 at the desired cutoff frequency (ωc) and the 
corresponding characteristic impedances (L/C from 
LPF prototype) we will obtain at frequencies around 
ωc a behavior similar to that of the prototype filter. 
 At frequencies far from ωc the behavior of the filter will no 

longer be identical to that of the prototype (in specific 
situations the correct behavior must be verified) 

 Frequency scaling is simplified: choosing the appropriate 
physical length of the line to have the electrical length λ/8 
at the desired cutoff frequency 

 All lines will have equal electrical lengths (λ/8) and 
thus comparable physical lengths, so the lines are 
called commensurate lines 



 At the frequency ω=2∙ωc the lines will be λ/4 
long 
 

 an supplemental attenuation pole will occur 
at 2∙ωc (LPF): 

 inductances (usually in series) 

 capacitances (usually shunt) 
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 the periodicity of tan function implies the 
periodicity of the filter implemented with lines 

 the filter response will be repeated every 4∙ωc 
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 Low-pass filter 4th order, 4 GHz cutoff frequency, 
maximally flat design (working with 50Ω source 
and load) 

 maximally flat table or formulas: 
 g1 = 0.7654 = L1 

 g2 = 1.8478 = C2 

 g3 = 1.8478 = L3 

 g4 = 0.7654 = C4 

 g5 = 1 (does not need supplemental impedance 
matching – required only for even order equal-ripple 
filters) 
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g1 = 0.7654 = L1, 
g2 = 1.8478 = C2, 

g3 = 1.8478 = L3, 
g4 = 0.7654 = C4, 
g5 = 1 = RL 
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 LPF Prototype parameters: 
 g1 = 0.7654 = L1 
 g2 = 1.8478 = C2 
 g3 = 1.8478 = L3 
 g4 = 0.7654 = C4 

 Normalized line impedances 
 z1 = 0.7654 = series / short circuit 
 z2 = 1 / 1.8478 = 0.5412 = shunt / open circuit 
 z3 = 1.8478 = series / short circuit 
 z4 = 1/ 0.7654 = 1.3065 = shunt / open circuit 

 Impedance scaling by multiplying with Z0 = 50Ω 
 All lines must have the length equal to λ/8 

(electrical length E = 45°) at 4GHz 

C
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 Filters implemented with Richards’ Transformation 
 beneficiate from the supplemental pole at 2∙ωc 

 have the major disadvantage of frequency periodicity, a supplemental 
non-periodic LPF must be inserted if needed 

lumped 
elements 

Richards’ 
commensurate 
lines 



 For even N order of the filter (N = 2, 4, 6, 8 ...) 
equal-ripple filters must closed by a non-
standard load impedance gN+1 ≠ 1 

 If the application doesn’t allow this, 
supplemental impedance matching is 
required  (quarter-wave transformer, 
binomial ...) to gL = 1 

)50(1 01  RRgN



 Same filter, 3dB equal-ripple 
 3dB equal-ripple tables or formulas: 
 g1 = 3.4389 = L1 
 g2 = 0.7483 = C2 
 g3 = 4.3471 = L3 
 g4 = 0.5920 = C4 
 g5 = 5.8095 = RL 

 Line impedances 
 Z1 = 3.4389∙50Ω = 171.945Ω = series / short circuit 
 Z2 = 50Ω / 0.7483 = 66.818Ω = shunt / open circuit 
 Z3 = 4.3471∙50Ω = 217.355Ω = series / short circuit 
 Z4 = 50Ω / 0.5920 = 84.459Ω = shunt / open circuit 
 RL = 5.8095∙50Ω = 295.475Ω = load 



maximum flat 
(4th ord) 

3dB equal-ripple 
(4th ord.) 



 Even order equal-ripple filters need output 
matching towards 50Ω for precise results. 
Example: 
 

RL = 50Ω 

RL = 295.48Ω 



 Filters implemented with the Richards’ transformation 
have certain disadvantages in terms of practical use 

 Kuroda’s Identities/ Transformations can eliminate 
some of these disadvantages 
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V0 
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27.1Ω 

92.4Ω 

65.3Ω 

 We use additional line 
sections to obtain 
systems that are easier to 
implement in practice 

 The additional line 
sections are called unit 
elements and have 
lengths of λ / 8 at the 
desired cutoff frequency 
(ωc) thus being 
commensurate with the 
stubs implementing the 
inductors and capacitors. 



 Kuroda’s Identities perform any of the 
following operations: 

 Physically separate transmission line stubs 
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l 
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V0 

50Ω 
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38.3Ω 

27.1Ω 

92.4Ω 

65.3Ω 

 Transform series 
stubs into shunt 
stubs, or vice versa 

 Change impractical 
characteristic 
impedances into 
more realizable 
values (~50Ω) 



 4 circuit equivalents (a,b) 
 each box represents a unit element, or transmission 

line, of the indicated characteristic impedance and 
length (λ/8 at ωc). The inductors and capacitors 
represent short-circuit and open-circuit stubs 



 4 circuit equivalents (c,d) 
 each box represents a unit element, or transmission 

line, of the indicated characteristic impedance and 
length (λ/8 at ωc). The inductors and capacitors 
represent short-circuit and open-circuit stubs 



 In all Kuroda’s Identities: 

 n: 

 

 The inductors and capacitors represent short-
circuit and open-circuit stubs resulted from 
Richards’ transformation (λ/8 at ωc). 

 Each box represents a unit element, or 
transmission line, of the indicated characteristic 
impedance and length (λ/8 at ωc). 
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 ABCD matrix, L5 
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 First circuit 
 
 

 Second circuit 
 
 
 

 Results are identical if we choose 
 
 

 The other 3 identities can be proved in the same 
way 
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 Low-pass filter 4th order, 4 GHz cutoff frequency, 
maximally flat design (working with 50Ω source 
and load) 

 maximally flat table or formulas: 
 g1 = 0.7654 = L1 

 g2 = 1.8478 = C2 

 g3 = 1.8478 = L3 

 g4 = 0.7654 = C4 

 g5 = 1 (does not need supplemental impedance 
matching – required only for even order equal-ripple 
filters) 



 Problems: 
 the series stubs would be very 

difficult to implement in microstrip 
line form 

 in microstrip technology it is 
preferable to have open-circuit 
stubs (short-circuit requires a via-
hole to the ground plane) 

 the 4 stubs are physically connected 
at the same point, an 
implementation that 
eliminates/reduces the coupling 
between these lines is impossible 

 not the case here, but sometimes 
the normalized impedances are 
much different from 1. Most circuit 
technologies are designed for 50Ω  
lines 
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0.7654 

0.5412 

1.8478 

1.3065 

 Apply Richards’s transformation 



 In all 4 Kuroda’s Identities we always have a circuit with a series line section 
(not present in initial circuit): 
 we add unit elements (z = 1, l = λ/8) at the ends of the filter (these redundant 

elements do not affect filter performance since they are matched to z = 1, both 
source and load) 

 we apply one of the Kuroda’s Identities at both ends and continue (add unit …) 
 we can stop the procedure when we have a series line section between all the stubs 

from Richards’ transformation 
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l 

l 

l 

V0 

1 

1 

0.7654 

0.5412 

1.8478 

1.3065 

l l 

1 1 

added unit 
element 

added unit 
element 



 Apply: 
 Kuroda 2 (L,Z known  C,Z) on the left side 

 Kuroda 1 (C,Z known  L,Z) on the right side 
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l 

l 
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0.7654 
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1.8478 

1.3065 

l l 

1 1 
K 2 (b) 
Z1=0.7654 
Z2=1 
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n2=2.3065 

l 

l l 

l 



 We add another unit element on the right 
side and apply Kuroda 2 twice 

l 

l 

l 
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1.8478 

0.5412 

0.4336 

2.3065 

l l 

1 1.7654 

l 

0.5667 

l 

l K 2 (b) 
Z1=1.8478 
Z2=0.5667 
n2=1.3067 

1

22 1
Z

Z
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K 2 (b) 
Z1=0.4336 
Z2=1 
n2=3.3063 

added unit 
element 



 Impedance scaling (multiply by 50Ω) 

l l 

0.5412 2.3065 

l l 

1.4336 1.7654 

l 

2.4145 

l 

0.7405 

l 

3.3063 

V0 

1 
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l l 

27.06Ω 115.33Ω 

l l 

71.68Ω 88.27Ω 

l 

120.73Ω 

l 

37.03Ω 

l 

165.32Ω 

V0 

50Ω 

50Ω 









 Richards’ transformation and Kuroda’s identities are 
useful especially for low-pass filters in technologies 
where the series stubs would be very difficult/ 
impossible  to implement (microstrip) 

 In the case of other filters (example 3rd order BPF): 
 series inductance can be implemented using K1-K2 

 series capacitance cannot be implemented using shunt 
stubs 



 For cases where Richards + Kuroda do not 
offer practical solutions we use circuits called 
impedance and admittance inverters 
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 The simplest example of impedance and admittance 
inverter is the quarter-wave transformer (L4) 
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 Impedance/admittance inverters can be used 
to change the structure of a designed filter to 
a realizable form 

 For example a 2nd order BSF 



 The series elements 
can be 
eliminated/replaced 
using an admittance 
inverter 
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 A similar result can be 

obtained for a bandpass 
filter 

 The equivalence of the two schematics (when 
looking from the left) is proofed by obtaining the 
same input admittance 



 A series LC circuit inserted in series in the circuit can be replaced by a 
shunt LC circuit inserted in parallel enclosed between 2 admittance 
inverters 

 A shunt LC circuit inserted in series in the circuit can be replaced by a 
series LC circuit inserted in parallel enclosed between 2 admittance 
inverters 

 The complete equivalence (when looking from both 
sides) is obtained by enclosing the series LC circuit 
between two admittance inverters 



 Most often the quarter-wave transformer is 
used 
 
 
 

 Implementation with capacitor networks 



 Implementation with transmission lines and 
reactive elements 
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 Using impedance/admittance inverters we can implement 
prototype filters using a single type of reactive elements 
 Shunt C replaced by series L enclosed between 2 inverters 
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 Using impedance/admittance inverters we can implement 
prototype filters using a single type of reactive elements 
 Series L replaced by shunt C enclosed between 2 inverters 
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 For prototype filters using inverters formulas 
we have  2∙N+1 parameters and N+1 
equations (to ensure the equivalence of the 2 
schematics) so N parameters can be chosen 
freely  
 convenient values for the reactance can be 

chosen, and the required inverters will be 
computed from the equivalence equations or, 

 convenient inverters can be chosen, and the 
required reactance values will be computed from 
the equivalence equations 



 The same principle can be applied to the BPF 
and BSF filters, those can be implemented using  
N+1 inverters and N resonators (series or shunt 
LC circuits with resonant frequency ω0) 
connected either in series or in parallel enclosed 
between 2 inverters 
 BPF are implemented with 

▪ series LC circuits connected in series between inverters 

▪ shunt LC circuits connected in parallel between inverters 

 BSF are implemented with 
▪ shunt LC circuits connected in series between inverters 

▪ series LC circuits connected in parallel between inverters 



 The impedance of short-circuited or open-
circuited line (stub) shows a resonant behavior 
that can be used to implement required 
resonators 
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 Short-circuited line 
 For the frequency at which l 

= λ/4 (ω0) the line behaves 
as an shunt LC resonator 
circuit 
 the line shows capacitive 

behavior for lower 
frequencies (l>λ/4)  

 the line shows inductive 
behavior for higher 
frequencies (l<λ/4)  

 Similar discussion for the 
open circuited line 
(equivalent to a series LC 
resonator around the 
frequency at which l=λ/4) 

 



 When the admittance inverters are 
implemented with quarter-wave 
transformers  with Z0 characteristic 
impedance 

 BPF – short-circuited shunt stubs with l = λ/4  

 

 BSF – open-circuited shunt stubs with l = λ/4 
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 Similar to a project assignment 
 Follows the amplifier designed as in L8 
 4th order bandpass filter, f0 = 5GHz, fractional 

bandwidth of the passband 10 % 
 maximally flat table or formulas for gn: 

n gn Z0n(Ω) 

1 0.7654 5.131 

2 1.8478 2.125 

3 1.8478 2.125 

4 0.7654 5.131 

n

n
g

Z
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




4

0
0





   



 



 Disadvantages of the filters using impedance 
inverters and lines as resonators: 
 short-circuited stubs (via-hole) for BPF 

 often the characteristic impedances for the stubs 
have values difficult to implement (2.125Ω) 
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 ll

l l 

2.125Ω 5.131Ω 

l l 

50Ω 50Ω 

l 

50Ω 

l 

2.125Ω 

l 

5.131Ω 

V0 

50Ω 

50Ω 



 A parallel coupled line section model is 
obtained by even/odd mode analysis 

 Even and odd modes are characterized by the 
characteristic even/odd mode impedances 
whose required values will impose the lines’ 
geometry (width / distance between lines, 
depending on the line technology we use) 



 Even mode - characterizes 
the common mode signal on 
the two lines 

 Odd mode - characterizes 
the differential mode signal 
between the two lines 

 Each of the two modes is 
characterized by different 
characteristic impedances 





 Bandpass filter with resonance at θ=π/2 (l=λ/4)  



 We get a Nth  order filter with N+1 parallel 
coupled line section  



 Equivalent circuits for  

 transmission lines of length 2θ 

 admittance inverters 



 We get a 2nd order BPF behavior cu 3 coupled 
lines sections 



 Compute the inverters from prototype 
parameters 
 
 
 

 Compute coupled line parameters Z0e/Z0o 
(all of length l=λ/4) 
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 Similar to a project assignment 
 Follows the amplifier designed as in L8 
 4th order bandpass filter, f0 = 5GHz, fractional 

bandwidth of the passband 10 % 
 0.5dB equal-ripple table for gn followed by filter 

design formulas   

n g Z0Jn Z0e Z0o 
1 1.6703 0.306664 70.04 39.37 
2 1.1926 0.111295 56.18 45.05 
3 2.3661 0.09351 55.11 45.76 
4 0.8419 0.111294 56.18 45.05 
5 1.9841 0.306653 70.03 39.37 









 The gaps between the resonators (~λ/2) 
generate a capacitive coupling between two 
resonators and can be approximated as series 
capacitors 



 From the real physical length of the resonators, 
some part is used implement a admittance 
inverter (the remainder φ=π, l=λ/2, resonator) 



 Compute the inverters (similar to coupled lines) 
 
 

 Compute capacitive susceptances 
 
 

 Compute the line lengths that must be “borrowed” 
to implement the inverters 
 

 Compute the actual length of the lines (λ/2 + borr.) 
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 ABCD matrix (L4) 
 short line , model with lumped elements is valid 

lA  cos

lYjC  sin0

lZjB  sin0

lD  cos
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 The shunt element is capacitive 
 
 

 Series elements are equal, and inductive 
 
 
 

 Equivalent circuit 
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 depending on the characteristic impedance: 

 high Z0 >> 

 

 

 low Z0 << 

  

lZX  0

lYB  0

hZZ 0

4


  l

lZZ 0

4


  l



 Series L, shunt C, we realize low-pass filters 
 We use 

 lines with high characteristic impedance to 
implement an series inductor 

 

 lines with low characteristic impedance to 
implement a shunt capacitor 

 

 usually the highest and lowest characteristic 
impedance that can be practically fabricated 
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 Not all the lines will result with the same length 
so the filter response is not periodic in frequency 



 LPF with 8GHz cutoff frequency, 6th order. 
Maximum realizable impedance is 150Ω and 
lowest 15Ω. 

n gn L/Cn Z θn[rad] θn[°] 

1 0.5176 0.206pF 15 0.155 8.90 

2 1.4142 1.407nH 150 0.471 27.01 

3 1.9318 0.769pF 15 0.580 33.21 

4 1.9318 1.922nH 150 0.644 36.89 

5 1.4142 0.563pF 15 0.424 24.31 

6 0.5176 0.515nH 150 0.173 9.89 











 Microwave and Optoelectronics Laboratory 
 http://rf-opto.etti.tuiasi.ro 
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