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 input impedance of a length l of transmission 
line with characteristic impedance Z0 , loaded 
with an arbitrary impedance ZL 
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 Total power delivered to the load = Incident 
power – “Reflected” power 

 Return “Loss” [dB] 

 time-average Power flow along the line 
 
 
 
 

   zjzj eeVzV   
0    zjzj ee

Z

V
zI 



 

0

0

      222*

0

2

0*
1Re

2

1
Re

2

1
 



zjzj

avg ee
Z

V
zIzVP 

 2

0

2

0
1

2

1




Z

V
Pavg

  Im*  zz

 dBlog20RL 



 The source has the ability to sent to the load a certain 
maximum power (available power) Pa 

 For a particular load the power sent to the load is  less than 
the maximum (mismatch) PL < Pa 

 The phenomenon is “as if” (model) some of the power is 
reflected Pr = Pa – PL 

 The power is a scalar ! 
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 complex numbers 
 in the complex plane 
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 a,b 
 information about signal power AND signal phase 

 Sij 
 network effect (gain) over signal power including 

phase information 
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Impedance Matching 
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 Shunt Stub 



 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation  
 “+” solution 
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 Series Stub 
 difficult to realize in single conductor line 

technologies (microstrip) 



 The sign (+/-) chosen for the series line equation 
imposes the sign used for the series stub equation 
 “+” solution 

 
 

 “-” solution 
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 Two ports in which matching influences the 
power transfer 
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 If we can afford a 1.2dB decrease of the input gain for 
better NF,Q (Gs = 1 dB), position m1 above is better 

 We obtain better (smaller) NF 



 output constant gain circles CCCOUT: -0.4dB, -0.2dB, 0dB, +0.2dB 
 the lack of noise restrictions allows optimization for better gain (close 

to maximum – position m4) 
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 Two ways of implementing filters in microwave 
frequency range 

 microwave specific structures (coupled lines, dielectric 
resonators, periodic structures) 

 filter synthesis with lumped elements followed by 
implementation with transmission lines 

 the first strategy leads to more efficient filters 
but: 

 has lower generality 

 design is often difficult (lack of analytical relationships) 



 Filter is designed with lumped elements (L/C) 
followed by implementation with distributed 
elements (transmission lines) 

 general 

 analytical relationships easy to implement on the 
computer 

 efficient 

 The preferred procedure is insertion loss 
method 



 |Γ(ω)|2 is an even function of ω 
 
 
 
 

 Choosing M and N polynomials appropriately 
leads to a filter with a completely specified 
frequency response 
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 We control the power loss ratio/attenuation 
introduced by the filter: 

 in the passband (pass all frequencies) 

 in the stopband (reject all frequencies) 



 Attenuation 
 in passband 

 in stopband 

 most often in dB 
 Frequency range 
 passband 

 stopband  

 cutoff frequency ω1’ 
usually normalized  
(= 1) 



 We choose the right polynomials to design an 
low-pass filter (prototype) 

 The low-pass prototype are then converted  
to the desired other types of filters 

 low-pass, high-pass, bandpass, or bandstop 



 Maximally flat filters (Butterworth, binomial): 
provide the flattest possible passband response 

 Equal ripple filters (Chebyshev): provide a 
sharper cutoff but the passband response will 
have ripples 

 Elliptic function filters, they have equal-ripple 
responses in the passband as well as in the 
stopband, 

 Linear phase filters, offer linear phase response 
in the passband to avoid signal distortion 
(important in some applications) 



 



 



 Polynomial 
 
 

 For 
 
 

 attenuation increases 
at a rate of 20∙N dB/decade 

 k gives the attenuation at cutoff frequency  
(3dB cutoff imposes k = 1) 
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 Polynomial 
 
 

 For 
 
 

 attenuation increases 
at a rate of 20∙N dB/decade (also) 

 attenuation is (22N)/4 greater than the binomial 
response at any given frequency where 

 the passband ripples: 1 + k2, k gives the ripple 
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Attenuation versus normalized frequency for 
maximally flat filter prototypes 



 

Attenuation versus normalized frequency for 
equal-ripple filter prototypes (3dB) 



 

Attenuation versus normalized frequency for 
equal-ripple filter prototypes (0.5dB) 



 



 Prototype filters are: 
 Low-Pass Filters (LPF) 
 cutoff frequency ω0 = 1 rad/s (f0 = 0.159 Hz) 
 connected to a source with R = 1Ω 

 The number of reactive elements  (L/C) is the 
order of the filter (N) 

 Reactive elements are alternated: series L / 
shunt C 

 There two prototypes with the same response, a 
prototype beginning with a shunt C element, 
and a prototype beginning with a series L 
element 



 We define filter parameters gi, i=0,N+1 
 gi are the element values in the prototype 

filter 
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 Formulas for filter parameters  
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 Formulas for filter parameters (iterative) 
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 For even N order of 
the filter (N = 2, 4, 6, 
8 ...) equal-ripple 
filters must closed by 
a load impedance 
gN+1 ≠ 1 

 If the application 
doesn’t allow this, 
supplemental 
impedance matching 
is required  (quarter-
wave transformer, 
binomial ...) to gL = 1 



 Design a 3rd order bandpass filter with 0.5 
dB ripples in passband. The center frequency 
of the filter should be 1 GHz. The fractional 
bandwidth of the passband should be 10%, 
and the impedance 50Ω. 



 0.5dB equal-ripple table or design formulas: 

 g1 = 1.5963 = L1/C3, 

 g2 = 1.0967 = C2/L4, 

 g3 = 1.5963 = L3/C5, 

 g4=1.000 =RL 

 



 ω0 = 1 rad/s (f0 = ω0 / 2π = 0.159 Hz) 



 After computing prototype filter’s elements: 

 Low-Pass Filters (LPF) 

 cutoff frequency ω0 = 1 rad/s (f0 = 0.159 Hz) 

 connected to a source with R = 1Ω 

 component values can be scaled in terms of 
impedance and frequency 



 LPF Prototype is only used as an intermediate 
step 

 Low-Pass Filter (LPF) 

 cutoff frequency ω0 = 1 rad/s (f0 = 0.159 Hz) 

 connected to a source with R = 1Ω 



 To design a filter which will work with a 
source resistance of R0 we multiplying all the 
impedances of the prototype design by R0  
(" ' " denotes scaled values) 
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 changing the cutoff frequency – (fig. b) 
 changing the type (for example LPF  HPF – 

fig. c) requires also conversion 

scaling 

scaling and conversion 



 To change the cutoff frequency of a low-pass 
prototype from unity to ωc we insert a 
variable change 
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 To change the cutoff frequency of a low-pass 
prototype we insert a variable substitution: 
 
 

 Equivalent to the widening of the power loss 
filter response 
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 New element values for frequency scaling: 
 
 
 

 When both impedance and frequency scaling 
are required: 
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 Variable substitution for LPF  HPF: 
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 Variable substitution for LPF  HPF : 
 
 
 
 

 Impedance scaling can be included 
 
 

 In the schematic series inductors must be 
replaced with series capacitors, and shunt 
capacitors must be replaced with shunt inductors 
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 Variable substitution for LPF  BPF: 
 
 
 

 where we use the fractional bandwidth of the 
passband and the center frequency 
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 A series inductor in the prototype filter is 
transformed to a series LC circuit 
 
 

 A shunt capacitor in the prototype filter is 
transformed to a shunt LC circuit 
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 A series inductor in the prototype filter is 
transformed to a shunt LC circuit 
 
 

 A shunt capacitor in the prototype filter is 
transformed to a series LC circuit  
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 Design a 3rd order bandpass filter with 0.5 dB 
ripples in passband. The center frequency of 
the filter should be 1 GHz. The fractional 
bandwidth of the passband should be 10%, 
and the impedance 50Ω. 

sradGHz /10283.612 9
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 0.5dB equal-ripple table or design formulas: 

 g1 = 1.5963 = L1/C3, 

 g2 = 1.0967 = C2/L4, 

 g3 = 1.5963 = L3/C5, 

 g4=1.000 =RL 

 



 ω0 = 1 rad/s (f0 = ω0 / 2π = 0.159 Hz) 
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 The lumped-element (L, C) filter design generally 
works well only at low frequencies (RF): 

 lumped-element inductors and capacitors are generally 
available only for a limited range of values, and can be 
difficult to implement at microwave frequencies 

 difficulty to obtain the (very low) required tolerance for 
elements 



 Impedance seen at the input  of a line loaded 
with ZL 
 
 

 We prefer the load impedance to be: 
 open circuit (ZL = ∞) 

 short circuit (ZL = 0) 
 Input impedance is: 
 capacitive 

 inductive 
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 Variable substitution 
 
 

 With this variable substitution we define: 
 reactance of an inductor 

 

 susceptance of a capacitor 
 

 The equivalent filter in Ω has a cutoff frequency 
at:  













 


pv

l
l


 tantan

lLjLjXj L  tan

lCjCjBj C  tan

84
tan1


  lll



 allows implementation of the inductors and capacitors 
with lines after the transformation of the LPF prototype to 
the required type (LPF/HPF/BPF/BSF) 



 By choosing the open-circuited or short-circuited lines 
to be λ/8 at the desired cutoff frequency (ωc) and the 
corresponding characteristic impedances (L/C from 
LPF prototype) we will obtain at frequencies around 
ωc a behavior similar to that of the prototype filter. 
 At frequencies far from ωc the behavior of the filter will no 

longer be identical to that of the prototype (in specific 
situations the correct behavior must be verified) 

 Frequency scaling is simplified: choosing the appropriate 
physical length of the line to have the electrical length λ/8 
at the desired cutoff frequency 

 All lines will have equal electrical lengths (λ/8) and 
thus comparable physical lengths, so the lines are 
called commensurate lines 



 At the frequency ω=2∙ωc the lines will be λ/4 
long 
 

 an supplemental attenuation pole will occur 
at 2∙ωc (LPF): 

 inductances (usually in series) 

 capacitances (usually shunt) 
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 the periodicity of tan function implies the 
periodicity of the filter implemented with lines 

 the filter response will be repeated every 4∙ωc 
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 Low-pass filter 4th order, 4 GHz cutoff frequency, 
maximally flat design (working with 50Ω source 
and load) 

 maximally flat table or formulas: 
 g1 = 0.7654 = L1 

 g2 = 1.8478 = C2 

 g3 = 1.8478 = L3 

 g4 = 0.7654 = C4 

 g5 = 1 (does not need supplemental impedance 
matching – required only for even order equal-ripple 
filters) 





 sradGHzc /105133.242 10 

g1 = 0.7654 = L1, 
g2 = 1.8478 = C2, 

g3 = 1.8478 = L3, 
g4 = 0.7654 = C4, 
g5 = 1 = RL 

nH
LR

L
c

523.110
1 





pF

R

C
C

c

470.1
0

2
2 






nH
LR

L
c

676.330
3 





pF

R

C
C

c

609.0
0

4
4 










 LPF Prototype parameters: 
 g1 = 0.7654 = L1 
 g2 = 1.8478 = C2 
 g3 = 1.8478 = L3 
 g4 = 0.7654 = C4 

 Normalized line impedances 
 z1 = 0.7654 = series / short circuit 
 z2 = 1 / 1.8478 = 0.5412 = shunt / open circuit 
 z3 = 1.8478 = series / short circuit 
 z4 = 1/ 0.7654 = 1.3065 = shunt / open circuit 

 Impedance scaling by multiplying with Z0 = 50Ω 
 All lines must have the length equal to λ/8 

(electrical length E = 45°) at 4GHz 

C
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 Filters implemented with Richards’ Transformation 
 beneficiate from the supplemental pole at 2∙ωc 

 have the major disadvantage of frequency periodicity, a supplemental 
non-periodic LPF must be inserted if needed 

lumped 
elements 

Richards’ 
commensurate 
lines 



 For even N order of the filter (N = 2, 4, 6, 8 ...) 
equal-ripple filters must closed by a non-
standard load impedance gN+1 ≠ 1 

 If the application doesn’t allow this, 
supplemental impedance matching is 
required  (quarter-wave transformer, 
binomial ...) to gL = 1 

)50(1 01  RRgN



 Same filter, 3dB equal-ripple 
 3dB equal-ripple tables or formulas: 
 g1 = 3.4389 = L1 
 g2 = 0.7483 = C2 
 g3 = 4.3471 = L3 
 g4 = 0.5920 = C4 
 g5 = 5.8095 = RL 

 Line impedances 
 Z1 = 3.4389∙50Ω = 171.945Ω = series / short circuit 
 Z2 = 50Ω / 0.7483 = 66.818Ω = shunt / open circuit 
 Z3 = 4.3471∙50Ω = 217.355Ω = series / short circuit 
 Z4 = 50Ω / 0.5920 = 84.459Ω = shunt / open circuit 
 RL = 5.8095∙50Ω = 295.475Ω = load 



maximum flat 
(4th ord) 

3dB equal-ripple 
(4th ord.) 



 Even order equal-ripple filters need output 
matching towards 50Ω for precise results. 
Example: 
 

RL = 50Ω 

RL = 295.48Ω 



 Filters implemented with the Richards’ transformation 
have certain disadvantages in terms of practical use 

 Kuroda’s Identities/ Transformations can eliminate 
some of these disadvantages 
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38.3Ω 

27.1Ω 

92.4Ω 

65.3Ω 

 We use additional line 
sections to obtain 
systems that are easier to 
implement in practice 

 The additional line 
sections are called unit 
elements and have 
lengths of λ / 8 at the 
desired cutoff frequency 
(ωc) thus being 
commensurate with the 
stubs implementing the 
inductors and capacitors. 



 Kuroda’s Identities perform any of the 
following operations: 

 Physically separate transmission line stubs 
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92.4Ω 

65.3Ω 

 Transform series 
stubs into shunt 
stubs, or vice versa 

 Change impractical 
characteristic 
impedances into 
more realizable 
values (~50Ω) 



 4 circuit equivalents (a,b) 
 each box represents a unit element, or transmission 

line, of the indicated characteristic impedance and 
length (λ/8 at ωc). The inductors and capacitors 
represent short-circuit and open-circuit stubs 



 4 circuit equivalents (c,d) 
 each box represents a unit element, or transmission 

line, of the indicated characteristic impedance and 
length (λ/8 at ωc). The inductors and capacitors 
represent short-circuit and open-circuit stubs 



 In all Kuroda’s Identities: 

 n: 

 

 The inductors and capacitors represent short-
circuit and open-circuit stubs resulted from 
Richards’ transformation (λ/8 at ωc). 

 Each box represents a unit element, or 
transmission line, of the indicated characteristic 
impedance and length (λ/8 at ωc). 
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 First circuit 
 
 

 Second circuit 
 
 
 

 Results are identical if we choose 
 
 

 The other 3 identities can be proved in the same 
way 
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 Low-pass filter 4th order, 4 GHz cutoff frequency, 
maximally flat design (working with 50Ω source 
and load) 

 maximally flat table or formulas: 
 g1 = 0.7654 = L1 

 g2 = 1.8478 = C2 

 g3 = 1.8478 = L3 

 g4 = 0.7654 = C4 

 g5 = 1 (does not need supplemental impedance 
matching – required only for even order equal-ripple 
filters) 



 Problems: 
 the series stubs would be very 

difficult to implement in microstrip 
line form 

 in microstrip technology it is 
preferable to have open-circuit 
stubs (short-circuit requires a via-
hole to the ground plane) 

 the 4 stubs are physically connected 
at the same point, an 
implementation that 
eliminates/reduces the coupling 
between these lines is impossible 

 not the case here, but sometimes 
the normalized impedances are 
much different from 1. Most circuit 
technologies are designed for 50Ω  
lines 

l 
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V0 
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0.7654 

0.5412 

1.8478 

1.3065 

 Apply Richards’s transformation 



 In all 4 Kuroda’s Identities we always have a circuit with a series line section 
(not present in initial circuit): 
 we add unit elements (z = 1, l = λ/8) at the ends of the filter (these redundant 

elements do not affect filter performance since they are matched to z = 1, both 
source and load) 

 we apply one of the Kuroda’s Identities at both ends and continue (add unit …) 
 we can stop the procedure when we have a series line section between all the stubs 

from Richards’ transformation 
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V0 

1 

1 

0.7654 

0.5412 

1.8478 

1.3065 

l l 

1 1 

added unit 
element 

added unit 
element 



 Apply: 
 Kuroda 2 (L,Z known  C,Z) on the left side 

 Kuroda 1 (C,Z known  L,Z) on the right side 
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K 2 (b) 
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Z2=1 
n2=2.3065 
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 We add another unit element on the right 
side and apply Kuroda 2 twice 
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0.5412 

0.4336 

2.3065 

l l 

1 1.7654 
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0.5667 
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l K 2 (b) 
Z1=1.8478 
Z2=0.5667 
n2=1.3067 

1

22 1
Z
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K 2 (b) 
Z1=0.4336 
Z2=1 
n2=3.3063 

added unit 
element 



 Impedance scaling (multiply by 50Ω) 

l l 

0.5412 2.3065 

l l 

1.4336 1.7654 

l 

2.4145 

l 

0.7405 

l 

3.3063 

V0 

1 

1 

l l 

27.06Ω 115.33Ω 

l l 

71.68Ω 88.27Ω 

l 

120.73Ω 

l 

37.03Ω 

l 

165.32Ω 

V0 

50Ω 

50Ω 









 Richards’ transformation and Kuroda’s identities are 
useful especially for low-pass filters in technologies 
where the series stubs would be very difficult/ 
impossible  to implement (microstrip) 

 In the case of other filters (example 3rd order BPF): 
 series inductance can be implemented using K1-K2 

 series capacitance cannot be implemented using shunt 
stubs 



 For cases where Richards + Kuroda do not 
offer practical solutions we use circuits called 
impedance and admittance inverters 
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 The simplest example of impedance and admittance 
inverter is the quarter-wave transformer (L4) 
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 Impedance/admittance inverters can be used 
to change the structure of a designed filter to 
a realizable form 

 For example a 2nd order BSF 



 The series elements 
can be 
eliminated/replaced 
using an admittance 
inverter 
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 A similar result can be 

obtained for a bandpass 
filter 

 The equivalence of the two schematics (when 
looking from the left) is proofed by obtaining the 
same input admittance 



 A series LC circuit inserted in series in the circuit can be replaced by a 
shunt LC circuit inserted in parallel enclosed between 2 admittance 
inverters 

 A shunt LC circuit inserted in series in the circuit can be replaced by a 
series LC circuit inserted in parallel enclosed between 2 admittance 
inverters 

 The complete equivalence (when looking from both 
sides) is obtained by enclosing the series LC circuit 
between two admittance inverters 



 Most often the quarter-wave transformer is 
used 
 
 
 

 Implementation with capacitor networks 



 Implementation with transmission lines and 
reactive elements 
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 Using impedance/admittance inverters we can implement 
prototype filters using a single type of reactive elements 
 Shunt C replaced by series L enclosed between 2 inverters 

10

1,

1,0
gg

LR
K

aA






1

,

1,









nn

Bna

nn
gg

RL
K

1

1,,

1,11,











kk

kaka

nkkk
gg

LL
K



 Using impedance/admittance inverters we can implement 
prototype filters using a single type of reactive elements 
 Series L replaced by shunt C enclosed between 2 inverters 
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 For prototype filters using inverters formulas 
we have  2∙N+1 parameters and N+1 
equations (to ensure the equivalence of the 2 
schematics) so N parameters can be chosen 
freely  
 convenient values for the reactance can be 

chosen, and the required inverters will be 
computed from the equivalence equations or, 

 convenient inverters can be chosen, and the 
required reactance values will be computed from 
the equivalence equations 



 The same principle can be applied to the BPF 
and BSF filters, those can be implemented using  
N+1 inverters and N resonators (series or shunt 
LC circuits with resonant frequency ω0) 
connected either in series or in parallel enclosed 
between 2 inverters 
 BPF are implemented with 

▪ series LC circuits connected in series between inverters 

▪ shunt LC circuits connected in parallel between inverters 

 BSF are implemented with 
▪ shunt LC circuits connected in series between inverters 

▪ series LC circuits connected in parallel between inverters 



 The impedance of short-circuited or open-
circuited line (stub) shows a resonant behavior 
that can be used to implement required 
resonators 
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 Short-circuited line 
 For the frequency at which l 

= λ/4 (ω0) the line behaves 
as an shunt LC resonator 
circuit 
 the line shows capacitive 

behavior for lower 
frequencies (l>λ/4)  

 the line shows inductive 
behavior for higher 
frequencies (l<λ/4)  

 Similar discussion for the 
open circuited line 
(equivalent to a series LC 
resonator around the 
frequency at which l=λ/4) 

 



 When the admittance inverters are 
implemented with quarter-wave 
transformers  with Z0 characteristic 
impedance 

 BPF – short-circuited shunt stubs with l = λ/4  

 

 BSF – open-circuited shunt stubs with l = λ/4 
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 Similar to a project assignment 
 Follows the amplifier designed as in L8 
 4th order bandpass filter, f0 = 5GHz, fractional 

bandwidth of the passband 10 % 
 maximally flat table or formulas for gn: 

n gn Z0n(Ω) 

1 0.7654 5.131 

2 1.8478 2.125 

3 1.8478 2.125 

4 0.7654 5.131 

n

n
g

Z
Z






4

0
0





   



 



 Disadvantages of the filters using impedance 
inverters and lines as resonators: 
 short-circuited stubs (via-hole) for BPF 

 often the characteristic impedances for the stubs 
have values difficult to implement (2.125Ω) 
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 ll

l l 

2.125Ω 5.131Ω 

l l 

50Ω 50Ω 

l 

50Ω 

l 

2.125Ω 
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5.131Ω 

V0 

50Ω 

50Ω 



 A parallel coupled line section model is 
obtained by even/odd mode analysis 

 Even and odd modes are characterized by the 
characteristic even/odd mode impedances 
whose required values will impose the lines’ 
geometry (width / distance between lines, 
depending on the line technology we use) 



 Even mode - characterizes 
the common mode signal on 
the two lines 

 Odd mode - characterizes 
the differential mode signal 
between the two lines 

 Each of the two modes is 
characterized by different 
characteristic impedances 





 Bandpass filter with resonance at θ=π/2 (l=λ/4)  



 We get a Nth  order filter with N+1 parallel 
coupled line section  



 Equivalent circuits for  

 transmission lines of length 2θ 

 admittance inverters 



 We get a 2nd order BPF behavior cu 3 coupled 
lines sections 



 Compute the inverters from prototype 
parameters 
 
 
 

 Compute coupled line parameters Z0e/Z0o 
(all of length l=λ/4) 
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 Similar to a project assignment 
 Follows the amplifier designed as in L8 
 4th order bandpass filter, f0 = 5GHz, fractional 

bandwidth of the passband 10 % 
 0.5dB equal-ripple table for gn followed by filter 

design formulas   

n g Z0Jn Z0e Z0o 
1 1.6703 0.306664 70.04 39.37 
2 1.1926 0.111295 56.18 45.05 
3 2.3661 0.09351 55.11 45.76 
4 0.8419 0.111294 56.18 45.05 
5 1.9841 0.306653 70.03 39.37 









 The gaps between the resonators (~λ/2) 
generate a capacitive coupling between two 
resonators and can be approximated as series 
capacitors 



 From the real physical length of the resonators, 
some part is used implement a admittance 
inverter (the remainder φ=π, l=λ/2, resonator) 



 Compute the inverters (similar to coupled lines) 
 
 

 Compute capacitive susceptances 
 
 

 Compute the line lengths that must be “borrowed” 
to implement the inverters 
 

 Compute the actual length of the lines (λ/2 + borr.) 
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 ABCD matrix (L4) 
 short line , model with lumped elements is valid 

lA  cos

lYjC  sin0
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 The shunt element is capacitive 
 
 

 Series elements are equal, and inductive 
 
 
 

 Equivalent circuit 
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 depending on the characteristic impedance: 

 high Z0 >> 

 

 

 low Z0 << 

  

lZX  0

lYB  0

hZZ 0

4


  l

lZZ 0

4


  l



 Series L, shunt C, we realize low-pass filters 
 We use 

 lines with high characteristic impedance to 
implement an series inductor 

 

 lines with low characteristic impedance to 
implement a shunt capacitor 

 

 usually the highest and lowest characteristic 
impedance that can be practically fabricated 
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 Not all the lines will result with the same length 
so the filter response is not periodic in frequency 



 LPF with 8GHz cutoff frequency, 6th order. 
Maximum realizable impedance is 150Ω and 
lowest 15Ω. 

n gn L/Cn Z θn[rad] θn[°] 

1 0.5176 0.206pF 15 0.155 8.90 

2 1.4142 1.407nH 150 0.471 27.01 

3 1.9318 0.769pF 15 0.580 33.21 

4 1.9318 1.922nH 150 0.644 36.89 

5 1.4142 0.563pF 15 0.424 24.31 

6 0.5176 0.515nH 150 0.173 9.89 
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